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Methods 

To mitigate the computational load caused by the large digital data size of WSIs, the regions of 
interest (ROIs) were first extracted using a defined workflow (Figure S2). The extracted ROIs 
were then subjected to preprocessing steps, including image enhancement, to improve the 
model's generalization ability (Figure S3). Subsequently, the ROIs were divided into small 
patches (512×512 pixels) for input into segmentation models (Table S2). Finally, a misaligned 
cutting-overlapping stitching strategy was applied to integrate and quantitatively analyze the 
patches across the whole slide (Figure S4). 

Detection and delineation of cells and tissues 

All the target identification algorithm models were trained using a supervised learning approach. 
Based on the characteristics of cells and tissues in specific stained sections, we employed the 
U2-Net and UNeXt to segment cells and tissues in the hematoxylin-eosin (H&E)-stained section 
and Gomori-stained section, respectively, and the ResNet-18 to classify granulocytes and 
erythropoiesis. All models were trained in a PyTorch 1.8.0 cuda11.1 environment, using the 
default initialization methods of PyTorch (Table S3). The performance of the segmentation 
models is demonstrated through loss and Intersection over Union (IoU) metrics, while the 
performance of the classification models is represented by the area under the curve (AUC), the 
confusion matrix, Accuracy, Precision, Recall, and F1 score. Next, we will elaborate on the 
parameters optimized through multiple rounds of training, performance metric evaluations, and 
the visual presentation of segmentation and classification results. 

Segmentation model training for targets in H&E-stained sections 

In H&E-stained sections, it’s essential to evaluate marrow cellularity, myeloid-to-erythroid (M: 
E) ratio, megakaryocyte morphology and distribution. Therefore, the targets for segmentation 
in H&E-stained sections include hematopoietic tissues, fat cells, bone trabecula, granulocytes, 
erythropoiesis, and megakaryocytes (Table S2). 
 For the segmentation task in H&E-stained sections, U2-Net was used to process 512*512 
pixels patches at various image levels. 1 U2-Net consists of an encoding-decoding phase, which 
is constituted by ReSidual Ublock (RSU) modules. Each RSU comprises an input convolution 
layer (with a filter size of 3, stride of 1, and padding of 1) along with batch normalization layers 
and rectified linear unit (ReLU), a U-Net-like symmetric encoding-decoding structure, and 
residual connections. The encoder stage of U2-Net employs RSU structures with depths of 7, 
6, 5, 4, 4, and 4, while the decoder mirrors the encoder's structure. The output convolutional 
layer has a filter size of 1 and is followed by the Sigmoid, outputting the probability of each pixel 
belonging to a specific target category. This allows for clear differentiation between the target 
and background, achieving precise boundary delineation and segmentation of targets. 
 The hyperparameter settings are shown in Table S4. The training and validation datasets 
of various targets for the U2-Net segmentation model are shown in Table S7. After three training 
rounds, the U2-Net model achieved a high-accuracy segmentation of tissues with an IoU of 0.8
±0.07 (Table S10). The visualization of segmentation results is presented in Figure S5A-E. 



Classification model training for granulocytes and erythropoiesis 

Immature myeloid and erythroid cells are challenging to distinguish visually based on an 
experienced assessment. Three hematopathologists meticulously annotated granulocytes and 
erythropoiesis independently in H&E-stained sections, and those consistent annotations were 
taken as the standard training and validation sets. To evaluate the inter-observer consistency, 
a subset of consistent granulocytes and erythropoiesis annotations (intersection) labeled by 
three pathologists was selected as the test set and served as the ground truth (intersection). 
Each pathologist’s annotations were compared against the ground truth (Table S12). Results 
indicate high inter-observer consistency and establish a reliable baseline. 

After accurately segmenting granulocytes and erythropoiesis by U2-Net, we employ the 
ResNet-18 classification model to differentiate between the two cell types. The image patches 
of granulocyte and erythropoiesis were extracted from the original segmentation images based 
on the size of the bounding rectangle of the segmentation mask (Figure S6). The ResNet-18 is 
a variant of the ResNet architecture that is 18 layers deep. 2 The input convolutional layer has 
a filter size of 7, followed immediately by a max pooling layer with a filter size of 2. The core 
section of ResNet-18 consists of four residual blocks (each of which contains two convolutional 
layers with a filter size of 3), with skip connections at the beginning and end of each residual 
block to promote the flow of information. A global average pooling layer then simplifies the 
feature map into a feature vector, which is ultimately processed by a fully connected layer and 
a SoftMax activation function to output the probabilities of each category. 
 The hyperparameter settings of ResNet-18 are presented in Table S5. We performed one 
training round on the model, which achieved a high accuracy in identifying granulocytes and 
erythropoiesis, with an average AUC of 0.958 in fivefold cross-validation (Table S8 and S11), 
and achieved an average detection rate of 0.89 (Figure S7). The visualization of the 
segmentation results is shown in Figure S5D. 

Segmentation model training for targets in Gomori-stained sections 

The severity of marrow fibrosis (MF) in the Gomori-stained sections is another crucial bone 
marrow feature of myeloproliferative neoplasm (MPN). This analysis necessitates precisely 
segmenting reticular fibers and identifying bone trabecula and fat cells (Table S2). 
 The segmentation model architecture for Gomori-stained sections is based on UNeXt, 
processing 512x512 pixels patches at various image levels. 3 This network employs an 
encoder-decoder architecture, where the encoder consists of three convolution blocks and two 
tokenized multilayer perceptron (MLP) stages, while the decoder comprises two tokenized MLP 
stages and three convolution blocks. Each convolutional block consists of one convolutional 
layer, batch normalization, and a ReLU. The convolutional layer has a filter size of three, a stride 
of one, and padding of one. In the encoder, a max pooling with a filter size of 2 follows the 
convolution blocks for down-sampling, whereas the decoder utilizes bilinear interpolation layers 
for up-sampling the feature maps. Features are processed through a Shift MLP before the 
Tokenized MLP. The Tokenized MLP block consists of a projection layer, a width-shifted MLP 
layer, a depth-wise convolution layer, a Gaussian Error Linear Unit (GeLU), and a height-shifted 
MLP layer, in sequence, with output features passed through layer normalization to the next 
block. The output is a segmentation map defined by the predictions for each pixel.  



Hyperparameter settings for the UNeXt model are presented in Table S6. The training and 
validation datasets of various targets for the UNeXt segmentation model are shown in Table S9. 
After three training rounds, the UNeXt model achieved a relatively high accuracy segmentation 
of tissues with an IoU of approximately 0.7 (Table S13). The visualization of segmentation 
results is presented in Figure S5F-H. 

Quantitative analysis of various metrics in the morphological model 

Bone marrow cellularity 

Bone marrow cellularity is determined by the average ratio of the area occupied by 
hematopoietic cells to the combined area of hematopoietic cells and fat cells within all valid 
hematopoietic regions. 4 Therefore, the calculation of bone marrow cellularity is based on the 
accurate segmentation of hematopoietic areas, fat, and bone trabecula. The segmentation of 
related tissues with a hematopoietic area can be visualized as shown in Figure 2A and Figure 
S5A-C. The identification of bone trabecula was used to correct the segmentation of the 
hematopoietic areas. The actual area occupied by hematopoietic cells was determined by the 
identified hematopoietic tissue region subtracted from the blank area. 

The formula for the bone marrow cellularity is as follows: 

Bone marrow cellularity = !"#$%&	()*%#+,+-)#-"	%.)%
!"#$%&	()*%#+,+-)#-"	%.)%	/	0%#	")&&	%.)%

  

Since the bone marrow cellularity involves the intact hematopoietic areas, therefore, 
fragmented tissue areas—those with smaller areas and incomplete fat cells should be excluded. 
Fragmented tissues are quantified by the area less than 40000 μm² and a local hematopoietic 
tissue proportion higher than the average proportion of hematopoietic tissue in the whole 
sections. The overall bone marrow cellularity is then determined by the average ratio of the 
area occupied by hematopoietic cells to the combined area of hematopoietic cells and fat cells 
in the remaining areas. 

Megakaryocyte morphology and distribution 

Metrics related to megakaryocytes include the megakaryocyte size, nucleus, and distribution. 
Regarding the megakaryocyte nucleus, we incorporated two indicators, the nuclear-
cytoplasmic ratio and the presence of naked nuclei. The literature did not provide a clear 
numerical definition of megakaryocyte morphology. We quantitatively defined the two 
characteristics based on the megakaryocytes in H&E-stained trephine sections from healthy 
donors. 

We took megakaryocyte cell size from healthy donors (n=8, total 380 cells) as the 
reference megakaryocyte cell size range (Figure S8). Based on the 2.5th to 97.5th percentiles 
to define the normal reference range, cells smaller than the 2.5th percentile were classified as 
small megakaryocytes, while those larger than the 97.5th percentile were defined as large 
megakaryocytes. 

Image patches for each megakaryocyte can be extracted based on boundaries after 
segmentation. Subsequently, each megakaryocyte image patch was processed based on the 



color threshold to extract the cytoplasm and nucleus, enabling the calculation of the 
nucleocytoplasmic ratio and the proportion of the nucleus for each megakaryocyte (Figure S9). 
Similarly, we have taken the megakaryocyte nuclear-cytoplasmic ratio range among healthy 
donors as the reference megakaryocyte nuclear-cytoplasmic ratio range. Larger than the 97.5th 
percentile of the reference nuclear-cytoplasmic ratio range was determined as megakaryocytes 
with a high nuclear-cytoplasmic ratio (Figure S10). 

Three hematopathologists manually categorized megakaryocyte clusters into dense and 
loose clusters in six H&E-stained section digital images and reviewed each other's work to 
ensure annotation consistency. The distance between megakaryocytes was defined as the 
distance between the centroids of two megakaryocytes minus the intracellular distance 
between the megakaryocytes (Figure S11). The numerical characteristics of megakaryocyte 
spacing were determined based on the manual annotations and clustering identified using the 
density-based spatial clustering of applications with noise (DBSCAN) algorithm. 5 

Fibrosis grading 

In this phase, the slide images were segmented into larger patches (1536*1536 pixels, 0.263 
µm per pixel) at 40X magnification to simulate the microscope insight for assessing fibrosis 
severity. Patches with more than 60% blank area were excluded from the analysis. Three 
hematopathologists independently classified the fibrosis grading of each patch (from 6 pre-PMF 
and 2 PMF) into MF-0 to MF-3 based on the 2022 WHO diagnostic criteria and other official 
consensus on grading bone marrow fibrosis. 6 Patches labeled with consistent fibrosis grading 
across three hematopathologists (547 patches) were taken as the standard sets for the 
following further analysis.  

First, we extracted the effective fibrotic regions within each consistent annotated patch 
(Figure S12) and then calculated the density of reticular fibers within these areas for each patch. 
Based on the 2022 WHO diagnostic criteria, fibers in the MF-0 region predominantly appear as 
single, non-crosslinked short fibers. 6 Therefore, fibers in the MF-1, MF-2, and MF-3 regions 
can be considered a dense accumulation of single short fibers. Therefore, the relative quantity 
of fibers within the effective fibrotic areas, or the fiber density, can, to some extent, represent 
the severity of fibrosis. After identifying the fibers by UNeXt, we can determine the number and 
area of fibers in each patch. In 94 patches marked as MF-0 among standard sets, the total 
number of fibers is 3818, with the area of a single fiber ranging from 3 to 50 (median, 8) μm². 
Next, in the patches of grades 1, 2, and 3 among standard sets, we calculate the fiber density 
by dividing the total fiber area in each patch by the median area of a single fiber (8 μm²), 
obtaining the relative fiber quantity. Then, the fiber density in each patch is determined by 
dividing the relative fiber quantity by the effective fibrotic area of the patch. 

Next, we correlated these densities with the annotated fibrosis grading of each patch (MF-
0 to MF-3), determining the fibrous density corresponding to different fibrosis gradings of each 
patch (Figure S13). This allows us to predict the fibrosis grading of unannotated patches. 
Determine the fiber density for the effective fibrosis area within each patch to derive the fibrosis 
grade for each patch of a biopsy section. Then, calculate the total effective fibrosis area for 
patches with corresponding fibrosis grade (MF-0 to MF-3) and the overall effective fibrosis area 
of the entire biopsy section. According to the 2022 WHO diagnostic criteria, using an area ratio 
of 30% as the baseline, the highest fibrosis grade with an effective fibrosis area ratio exceeding 



30% of the total effective fibrosis area will be the final fibrosis grade for the entire biopsy section 
(Figure S14). 

Classification 

Fourteen pathological indicators were included in constructing the bone marrow classification 
model (Figure 4A), and six clinical indicators contributed to a clinical classification model (Figure 
4B). On this basis, all fourteen pathological indicators and six clinical indicators were 
incorporated to build the comprehensive classification model (Figure 4C). The definition of 
clinical indicators implemented in classification models is as follows: hemoglobin (Hb), white 
blood cell count (WBC), platelet count (PLT), and lactate dehydrogenase (LDH) level were 
analyzed as continuous variables using their raw quantitative measurements. While gene 
mutation status and spleen sizes were analyzed as categorical variables. Gene mutation status 
was categorized into “mutated” (presence of ≥1 driver mutation in JAK2, CALR, or MPL genes) 
versus "Wild-type" (no detectable mutations). Splenomegaly grading was stratified into four 
categories: absent, mild, moderate, or severe. 

All classification models were random forest classifiers. The composition ratios of disease 
samples in the training and validation sets are presented in Table S14. 

The model parameters for those three classification models are identical. Each model 
consists of 100 decision trees. For each tree, 80% of the original dataset samples are randomly 
selected with replacements to form the training dataset. A certain number of features, 
determined to be one-third of the total number of features, are randomly chosen to create a 
feature subset. The classification and regression tree (CART) algorithm is then applied to 
construct the decision tree based on the selected dataset and feature subset. 7 No maximum 
depth limit is set for the decision trees, and their growth stops when the number of samples at 
a node decreases to less than two. The final prediction result is obtained by averaging the 
prediction results of each tree.  

Initially, 45 samples (45/342, 13%) were randomly selected from all 342 samples from our 
center as the internal test set (Table S14). The remaining samples were randomly divided into 
training and validation sets in an 80%/20% ratio and underwent 500 independent trials. In each 
trial, three classification models—bone marrow, clinical, and comprehensive models—were 
independently trained. Figure S15 presents the predicted performance of the three models in 
the 500 independent trials. The classification performances of the final three classification 
models are shown in Table S15.



Supplementary Tables 

Supplementary Table 1. Clinical Characteristics of All Cohort from Our Center. 
 Blood counts (value) 

LDH (U/L) 
(Median, range) 

Mutation status (number) Splenomegaly (number) 
 Platelet count (109/L) 

(Median, range) 
White cell count (1012/L) 
(Median, range) 

Hemoglobin (g/L) 
(Median, range) 

TN JAK2 
(V617F) 

CALR MPL no mild moderate severe 

MPN             
ET (n=78) 771 (342-1680) 8.44 (3.12-23.62) 138.5 (59-182) 226.5 (142-536.9) 10 48 19 1 56 10 8 4 
Pre-PMF (n=37) 918 (119-2562) 8.78 (3.06-36.12) 131 (66-159) 269.3 (159.7-482.7) 2 23 11 1 16 8 9 4 
PMF (n=167) 218 (7-1541) 7.82 (0.67-196.23) 102 (37-190) 486 (141-2073.2) 16 108 39 4 14 9 54 90 
PV (n=27) 576 (217-1387) 11.91 (4.32-25.44) 191 (124-235) 316.6 (142.4-533.4) 2 25 0 0 5 9 11 2 
Nonneoplastic             
Normal (n=8) 241 (166-291) 7 (4.66-10.98) 140 (128-184) 165.1 (113-260) 8 0 0 0 8 0 0 0 
IDA (n=25) 264 (31-1191) 5.9 (1.27-16.78) 77 (35-113) 182.9 (107.2-1549) 25 0 0 0 15 6 2 2 

Abbreviations: MPN, myeloproliferative neoplasm; ET, essential thrombocythemia; PMF, primary myelofibrosis; pre-PMF, prefibrotic PMF; PV, polycythemia vera; IDA, iron-deficiency anemia; LDH, 

lactate dehydrogenase; TN, triple-negative. 

 
Supplementary Table 2. Hierarchical Processing of Various Tissues in Bone Marrow Trephine Section. 

Section Research Metric Tissues 
Segmentation 

Model 
Magnification a Hierarchies 

Pixel 
Size 
(μm) 

Image Patch 
Size (pixel) b 

Number of Annotated Slides 
(Total Annotated Cells/Tissue) 

H&E-stained 
section 

 
Marrow cellularity 

Fat 

U2-Net 

10X Level 1 1.052 512*512 32 (53559) 

Bone 10X Level 1 1.052 512*512 50 (7240) 
Hemopoietic tissue 10X Level 1 1.052 512*512 50 (1430) 



Myeloid-to-
erythroid ratio 

Granulocyte & 
Erythropoiesis 

U2-Net 80X NA c 0.132 512*512 87 (89449) d 

Megakaryocyte Megakaryocyte U2-Net 40X Level 0 0.263 512*512 141 (33217) 

Gomori-stained 
section 

Fibrosis severity 

Fibrosis 

UNeXt 

20X Level 0.5 0.526 512*512 52 (98464) 

Fat 10X Level 1 1.052 512*512 37 (63354) 
Bone 10X Level 1 1.052 512*512 50 (11870) 

a The specific magnifications were determined by the visual observation of hematopathologists and the requirement of the model development. 

b The actual size of each pixel depended on the specific magnification corresponding to specific stained sections, aimed at accurately matching the characteristics of various cells and tissues. 

c Pixel scaling has no corresponding hierarchy. 
d Granulocytes and erythropoiesis were annotated jointly, with the reported value representing the sum of both. Given the significant quantity of erythropoiesis and granulocytes present in a single 

section image, and to account for variability across different samples, annotations of these cells are performed within selected regions on each image rather than comprehensive annotation across 

the entire slide, which was the approach used for the annotations of other tissues. 

Abbreviations: H&E-stained section, hematoxylin-eosin-stained section. 

 



Supplementary Table 3. Model Training Environment Configurations. 
 Configurations 

CPU Intel(R) Xeon(R) Gold 6226R @2.90GHz 
GPU Tesla A100 40G 

System Platform CentOS 7.3 
Deep Learning 
Framework 

PyTorch 1.8.0 cuda11.1 

Abbreviations: CPU, Central Processing Unit. 

 
Supplementary Table 4. Hyperparameters of the U2-Net Model for 
Segmentation Applied in H&E-stained Section. 
      Tissue 

Parameter 
Fat Bone Hemopoietic tissue 

Granulocyte & 

Erythropoiesis 
Megakaryocyte 

Batch Size 16 16 16 16 16 

Learning Rate 0.001 0.001 0.001 0.001 0.001 

Optimizer Adam Adam Adam Adam Adam 

Epochs 250 200 200 200 200 

Loss function Cross Entropy Loss 

Abbreviations: H&E-stained section, hematoxylin-eosin-stained section; Adam, Adaptive Moment estimation. 

 
Supplementary Table 5. Hyperparameters of the ResNet-18 Model for 
Identifying Granulocytes and Erythropoiesis. 

      Tissue 

Parameter 
Granulocyte & Erythropoiesis 

Batch Size 32 

Learning Rate 0.001 

Optimizer SGD 

Epochs 80 

Loss function Cross Entropy Loss 

Abbreviations: SGD, Stochastic Gradient Descent. 

 
Supplementary Table 6. Hyperparameters of the UNeXt Model for 
Segmentation Applied in Gomori-stained Section. 

      Tissue 

Parameter 
Bone Fat Fibrosis 

Batch Size 16 16 16 



Learning Rate 0.001 0.001 0.001 

Optimizer Adam Adam Adam 

Epochs 200 250 250 

Loss function Cross Entropy Loss 

Abbreviations: Adam, Adaptive Moment estimation. 
 



Supplementary Table 7. Training and Validation Image Patches and Samples for the U2-Net Model in H&E-stained Section. 

Abbreviations: H&E-stained section, hematoxylin-eosin-stained section. 

 

Supplementary Table 8. Training and Validation Image Patches and Samples for the ResNet-18 model in identifying 
granulocytes and Erythropoiesis. 
H&E-stained section 1 st round 

Samples 
Training Validation 

Granulocyte 37816 8703 

249 Erythropoiesis 20113 3549 

Total 57929 12252 

Abbreviations: H&E-stained section, hematoxylin-eosin-stained section. 

H&E-stained 

section 

Initial round  1st round  2nd round  3rd round 
Samples 

Training Validation  Training Validation  Training Validation  Training Validation 

Hemopoietic tissue 1796 316  2874 507  7185 1264  8980 1585  

Fat 2507 443  3449 608  8622 1521  14750 2594 165 

Bone trabecula 1734 301  2737 483  6842 1206  13435 2061  

Granulocyte & 

Erythropoiesis 
3163 558 

 
5435 959 

 
7165 1264 

 
42150 7435 

249 

Megakaryocyte 3094 547  5396 923  7901 1394  63034 11123 



 

 

Supplementary Table 9. Training and Validation Image Patches and Samples for the UNeXt Model in Gomori-stained 
Section. 

 

Gomori-stained 

section 

Initial round  1st round  2nd round  3rd round 
Samples 

Training Validation  Training Validation  Training Validation  Training Validation 

Fibrosis 1808 375  2823 423  4454 658  12220 2155 

132 Fat 2175 384  3245 572  4300 602  12795 2255 

Bone trabecula 1856 328  2284 296  4051 576  11420 2015 



 
Supplementary Table 10. Segmentation Performance of the U2-Net Model 
Applied in H&E-Stained Section. 

 Initial round 1st round 2nd round 3rd round 
Hemopoietic tissue 

Loss 1.6045 0.5902 0.4373 0.4570 
IoU 0.57 0.62 0.70 0.73 

Fat 
Loss 0.8655 0.6580 0.3459 0.2586 
IoU 0.45 0.60 0.71 0.76 

Bone trabecula 
Loss 0.2473 0.1182 0.1301 0.1364 
IoU 0.76 0.76 0.85 0.87 

Megakaryocyte 
Loss 1.2949 0.8426 0.6950 0.5209 
IoU 0.62 0.75 0.74 0.82 

Erythropoiesis & Granulocyte 
Loss 1.2714 0.7977 0.4874 0.4541 
IoU 0.73 0.79 0.78 0.81 

Abbreviations: H&E-stained section, hematoxylin-eosin-stained section; IoU, Intersection over Union. 

 
Supplementary Table 11. Fivefold Cross-validation of the ResNet-18 
Model Applied in Identifying Granulocyte & Erythropoiesis. 

 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average 
AUC 0.957 0.958 0.959 0.959 0.958 0.958 

Accuracy 0.961 0.962 0.967 0.962 0.963 0.963 
Precision 0.955 0.956 0.958 0.955 0.957 0.957 

Recall  0.961 0.961 0.962 0.961 0.961 0.961 
F1 score 0.958 0.959 0.960 0.959 0.960 0.958 

Abbreviations: AUC, area under the curve. 

 
Supplementary Table 12. Segmentation Performance of the UNeXt Model 
Applied in Gomori-Stained Section. 

 Initial round 1st round 2nd round 3rd round 
Fibrosis 

Loss 0.6522 0.1625 0.1315 0.0973 
IoU 0.27 0.41 0.53 0.57 

Fat 
Loss 0.7027 0.2621 0.0793 0.0672 
IoU 0.43 0.51 0.50 0.63 

Bone trabecula 
Loss 0.5571 0.0564 0.0515 0.0499 
IoU 0.63 0.75 0.74 0.78 

Abbreviations: IoU, Intersection over Union. 



Supplementary Table 13. Inter-observer Consistency and Model 
Overfitting Evaluation. 
 

 
Granulocyte identification  Erythropoiesis identification 
FNR FPR Precision Recall  FNR FPR Precision Recall 

Intersection VS User1 0.000 0.053 0.94 1  0.000 0.215 0.78 1 
Intersection VS User2 0.000 0.025 0.97 1  0.006 0.081 0.91 1 
Intersection VS User3 0.000 0.050 0.94 1  0.000 0.081 0.91 1 
AI VS Intersection 0.065 0.194 0.78 0.93  0.180 0.186 0.82 0.82 
AI VS User1 0.065 0.257 0.7 0.93  0.109 0.323 0.69 0.89 
AI VS User2 0.069 0.218 0.76 0.93  0.146 0.222 0.78 0.85 
AI VS User3 0.057 0.248 0.72 0.94  0.176 0.240 0.76 0.82 

Evaluation of inter-observer baseline, segmentation performance, and overfitting in the ResNet-18 classification model. 

The False Negative Rate (FNR) was used to quantify the missed detection rate, defined as the proportion of actual 

positive samples incorrectly classified as negative. The False Positive Rate (FPR) was employed to describe the false 

detection rate, representing the proportion of actual negative samples erroneously classified as positive. The 

intersection refers to a subset of consistent annotations provided by three pathologists (User1, User2, and User3), 

serving as an uncontested diagnostic consensus. ”AI” denotes the annotations predicted by the ResNet-18 

classification model. Inter-observer consistency was evaluated by comparing each pathologist’s annotations with the 

intersection, while model performance was assessed by comparing its predictions with both the intersection and 

individual pathologist annotations. These comparisons demonstrate the model’s reliability and confirm that it is not 

overfitting to any specific pathologist. 

Abbreviations: FNR, false negative rate; FPR, false positive rate; AI, artificial intelligence. 

 
 
Supplementary Table 14. Datasets for Random Forest Models Applied in 
Differentiating Nonneoplastic and MPN Subtypes. 

The number of samples utilized for the training and validation sets in the table corresponds to the quantity extracted 

for each random experiment. 

Abbreviations: MPN, myeloproliferative neoplasm; ET, essential thrombocythemia; PMF, primary myelofibrosis; pre-

PMF, prefibrotic PMF; PV, polycythemia vera. 

 Internal  External 

 
Total  

(samples, n) 

Training  

(samples, n) 

Validation  

(samples, n) 

Test 

(samples, n) 

 Test 

(samples, n) 

ET 78 55 13 10  19 

Pre-PMF 37 26 6 5  20 

PV 27 18 4 5  38 

PMF 167 117 30 20  19 

Nonneoplastic 33 22 6 5  10 

Total 342 238 59 45  106 



Supplementary Table 15. Classification Performances of Classification 
Models Applied in Differentiating Nonneoplastic and MPN Subtypes. 

Abbreviations: MPN, myeloproliferative neoplasm; ET, essential thrombocythemia; PMF, primary myelofibrosis; pre-

PMF, prefibrotic PMF; PV, polycythemia vera; AUC, area under the curve.

  
 

ET Pre-PMF PMF PV Nonneoplastic Macro Micro 

Internal 
test set 

Bone marrow model  

AUC 0.91 0.92 1 0.98 1 0.96 0.8 
Accuracy 0.8 0.8 0.8 0.8 0.8 0.8 0.8 
Precision 0.67 0.4 1 0.67 0.83 0.71 0.8 

Recall 0.6 0.4 0.95 0.8 1 0.75 0.8 
F1 score 0.63 0.4 0.97 0.73 0.91 0.73 0.8 

Clinical model  

AUC 0.9 0.84 0.95 0.88 1 0.92 0.78 
Accuray 0.73 0.73 0.73 0.73 0.73 0.73 0.73 
Precision 0.7 0.67 0.74 0.67 0.83 0.72 0.78 

Recall 0.7 0.4 0.85 0.4 1 0.67 0.73 
F1 score 0.7 0.5 0.79 0.5 0.91 0.68 0.73 

Comprehensive model  

AUC 0.94 0.94 0.96 0.97 1 0.96 0.8 
Accuracy 0.85 0.85 0.85 0.84 0.85 0.85 0.85 
Precision 0.64 0.5 1 1 1 0.83 0.84 

Recall 0.7 0.6 0.95 0.8 1 0.81 0.84 
F1 score 0.67 0.55 0.97 0.89 1 0.82 0.84 

External 
test set 

Bone marrow model 

 AUC 0.95 0.84 1.0 0.92 0.99 0.94 0.58 
 Accuracy 0.84 0.84 0.84 0.84 0.84 0.84 0.84 
 Precision 0.76 0.73 0.95 0.86 0.82 0.82 0.84 
 Recall 0.84 0.53 1.0 0.84 1.0 0.84 0.84 
 F1 score 0.8 0.62 0.97 0.85 0.9 0.83 0.84 



Supplementary Figures 

Supplementary Figure 1. Flowchart of MPN (n=309) and Nonneoplastic 
(n=33) Case Selection Process. 
 

 
The plot illustrates the inclusion and exclusion flowchart for samples in the internal dataset, with samples from the 

external dataset enrolled based on the same criteria. For inclusion, each slide must encompass sufficient tissue (≥ 0.5

×0.2 cm² for each). Outdated or contaminated slides were excluded. Additionally, biopsies displaying evident cortical 

bone or severely fragmented tissue, thereby hindering the assessment of hematopoietic status, were also excluded.  

Abbreviations: MPN, myeloproliferative neoplasm; EMR, electronic medical record; ET, essential thrombocythemia; 

PMF, primary myelofibrosis; pre-PMF, prefibrotic PMF; PV, polycythemia vera; HD, healthy donor; IDA, iron-deficiency 

anemia. 

 

Supplementary Figure 2. The Extraction of the Region of Interest (ROI). 

419 were identified through EMR

34 were excluded
     30 did not have complete clinical information
          ET n=8, pre-PMF n=3
           PV n=2, PMF n=15, IDA n=2
     4 were not retrievable
          ET n=2, PMF n=2

43 were excluded
     13 insufficient tissue
           ET n=4, PMF n=7, IDA n=2
     16 outdated or contaminated
           ET n=6, pre-PMF n=1
           PV n=1, PMF n=8
     14 evident cortical
           ET n=4, pre-PMF n=3, PMF n=7

385 were retrieved
       from archive

342 were of eligibility

238 for training set 59 for validation set 45 for test set

Samples from internal dataset

ET n=78, pre-PMF n=37
PV n=27, PMF n=167
HD n=8, IDA n=25

ET n=92, pre-PMF n=41
PV n=28, PMF n=189
HD n=8, IDA n=27

ET n=102, pre-PMF n=44
PV n=30, PMF n=206
HD n=8, IDA n=29



 

A&B. The original image was transformed into an image within the HSV color space, a visible light subset in a three-

dimensional color space composed of Hue (H), Saturation (S), and Value (V). C. By conducting color localization 

tracking on the bone marrow tissue within the HSV color space and calculating the HSV thresholds, a color mask can 

be constructed based on these threshold values. Applying bitwise operations to the original image and this mask yields 

the effective area of the bone marrow slide as illustrated in the image. D. Further morphological transformations, 

including erosion, dilation, and contour area threshold filtering, were applied for refinement. And the area within the 

bounding rectangle was the Region of Interest (ROI). 

Supplementary Figure 3. The Pre-processing of Whole Slide Images 
(WSIs). 

 
Image Augmentation techniques were applied to the Whole Slide Images (WSIs) to enhance the generalizability of the 

image recognition model. These included symmetrical transformations, rotation, HSV color space conversion, 

histogram equalization, blurring, motion blur, distortion, elastic deformation, inversion, channel scraping, Gaussian 

noise, salt-and-pepper noise, random brightness changes, random contrast adjustments, grayscale modifications, 

enhanced elastic deformations, and staining enhancement methods specific to H&E-stained sections targeting eight 



staining gradients. 

Supplementary Figure 4. Misaligned Cutting-Overlapping Stitching 
Strategy. 

 
For structural segmentation of images, initial misaligned splitting into small image patches (512*512 pixels) is 

performed, followed by inference on each patch and subsequent reassembly into the original image size. This 

misaligned splitting and overlapping reassembly strategy enhances image segmentation accuracy while eliminating 

seam marks from image assembly, improving overall visualization. 

Supplementary Figure 5. Visualization of the Segmentation of Cells and 
Tissues. 

 



 

 
 



 

 



 

 



 
A-E. The segmentation of targets in hematoxylin and eosin-stained section by U2-Net model and the identification of 

granulocyte and erythropoiesis by RseNet-18 model. F-H. The segmentation of targets in Gomori-stained section by 

UNeXt model. 

Supplementary Figure 6. Input Image Patches Sizes of Granulocytes and 
Erythropoiesis for ResNet-18 Model. 

 
Due to the small size of granulocytic and erythroid cells, which also vary in size, each image patch was resized by pixel 

scaling to 64*64 pixels (16.768 μm per pixel) to facilitate model training. Each image patch contains only one cell, thus 

the number of patches used corresponds to the number of cells. 

Supplementary Figure 7. The Confusion Matrix of the ResNet-18 Model in 
Recognizing Granulocyte & Erythropoiesis. 



 
The confusion matrix was generated to evaluate the performance of the ResNet-18 model in identifying granulocytes 

and erythropoiesis in the test set. The test set was defined as a subset of consistent annotations (intersection) provided 

by three pathologists, serving as the “gold standard”. Predicted labels were derived from the ResNet-18 model. The 

model achieved an average detection rate of 0.89. 

Supplementary Figure 8. Area Range of Megakaryocytes from Healthy 
Donors. 



 

Supplementary Figure 9. Analysis for Nuclear-cytoplasmic Ratio and 
Nuclear Proportion of Megakaryocyte. 

 
Image patches for each megakaryocyte could be extracted based on delineated boundary after segmentation (A). Then, 

cytoplasm and nuclei were extracted from each megakaryocyte image patch using color thresholding (B), enabling the 



calculation of individual nucleo-cytoplasmic ratio and nuclear proportion (nuclear ratio) (C). The nuclear-cytoplasmic 

ratio is calculated by nuclear area / (total cell area − nuclear area). The nuclear proportion (nuclear ratio) is calculated 

by nuclear area / total cell area. 

Supplementary Figure 10. Nuclear-cytoplasmic Ratio Range of 
Megakaryocytes from Healthy Donors. 

 

The nuclear-cytoplasmic ratio is calculated by nuclear area / (total cell area − nuclear area), as shown in Supplementary 

Figure 9. 
Supplementary Figure 11. Visualization of Megakaryocyte Centroids and 
Intercellular Spacing. 



 
A. Original image at 40X magnification. B. Megakaryocytes (green) and their centroids (red); the centroid of a 

megakaryocyte represents its geometric center, calculated by averaging the positions of all pixels within the 

megakaryocyte. C. Distances between megakaryocyte centroids (purple lines). D. Actual distances between 

megakaryocytes (pink lines), which were determined by subtracting the internal distance of a megakaryocyte from the 

centroid distance. 

Supplementary Figure 12. The Extraction of Effective Fibrosis Area. 
 

 



The effective fibrosis region within each patch was calculated as the total area of the patch minus the regions of bone 

trabecula and blank area. 
Supplementary Figure 13. Analysis of Fiber Density for Each Image Patch. 

 
Fiber density is the ratio of the number of fibers and the effective fibrosis region within each image patch. The box plot 

demonstrates the clear separation in fiber density among patches of different levels, allowing for the grading calculation 

of individual patches based on fiber density within the patch. MF-0: fiber density ~1550.863; MF-1: 1550.863 ~16384.87; 

MF-2: 16384.87 ~28336.58; MF-3: 28336.58~ . 

Supplementary Figure 14. Visualization of the severity of fibrosis. 

 
An image of a section sample leveled as MF-1 at 1X magnification. Grid colors of small image patches correspond 
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to fibrosis grades green represents MF-0, yellow represents MF-1, pink represents MF-2, red represents MF-3, and 

blue represents the original patches (pre-grading or excluded from the assessment of fibrosis grade). The fibrosis level 

was calculated based on the regions with the highest level of effective fibrosis exceeding 30%. The prediction of the 

fibrosis level of individual samples (MF-0~1 and MF-2~3) achieved an accuracy of 0.916.  

Supplementary Figure 15. Performances of The Three Classification 
Models in the Internal test set (n=45). 

 
The distribution of correct predictions made by the bone marrow, clinical, and comprehensive models on the internal 

test set across 500 independent trials. The x-axis represents the number of correctly predicted samples by the three 

classification models in each independent trial. The y-axis represents the total count of occurrences for each value on 

the x-axis across 500 trials. The plot showed that the three classification models' highest frequency of correct 

predictions occurs at 32, 36 and 38 samples, respectively. 

Supplementary Figure 16. Visualization of Categorizing Nonneoplastic 
and MPN subtypes by Classification models. 

The number of samples that were accurately predicted 



 
PCA plots illustrate the separation among non-MPN and MPN subtypes through the bone marrow, clinical, and 

comprehensive classification models. 

Supplementary Figure 17. Classification Performances of Classification 
Models Applied in Differentiating Nonneoplastic and MPN Subtypes. 

 
The classification performance of models on the internal and external test sets are shown in the confusion matrices.  

A-C. The classification performance of the internal test set is shown for the bone marrow, clinical, and comprehensive 

classification model, with average precisions of 0.75, 0.67, and 0.81, respectively. D. The classification performance of 

the external test set is presented for the bone marrow classification model, achieving an average precision of 0.842. 

When misclassifications occurred, ET and pre-PMF were most frequently mistaken for one another. 

Abbreviations: MPN, myeloproliferative neoplasm; ET, essential thrombocythemia; pre-PMF, prefibrotic PMF; PMF, 

primary myelofibrosis; PV, polycythemia vera. 
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