ARTICLE - Myeloproliferative Disorders

Artificial intelligence-based quantitative bone marrow
pathology analysis for myeloproliferative neoplasms

Dandan Yu,** Hongju Zhang,"?* Yanyan Song,"? Yuan Tao,"? Fengyuan Zhou,* Ziyi Wang,*

Rongfeng Fu,® Ting Sun,®* Huan Dong,-* Wenjing Gu,"* Renchi Yang,-® Zhijian Xiao,"? Qi Sun™? Correspondence: L. Zhang
and Lei Zhang™? zhangleil@ihcams.ac.cn
Q. Sun
'State Key Laboratory of Experimental Hematology, National Clinical Research Center for sunqi@ihcams.ac.cn
Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy Z. Xiao

. . . zjxiao@ihcams.ac.cn
for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of

. . . . . . Received: June 19, 2024.
Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking e May 23, 2025.
Union Medical College, Tianjin; 2Tianjin Institutes of Health Science, Tianjin; *School of Early view: June 12, 2025.

Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking

. . . . . . https://doi.org/10.3324/haematol.2024.286123
Union Medical College, Beijing and *XY Al Technologies (Su Zhou) Limited, Jiangsu, China

©2025 Ferrata Storti Foundation

Published under a CC BY-NC license

*DY and HZ contributed equally as first authors.



Methods

To mitigate the computational load caused by the large digital data size of WSiIs, the regions of
interest (ROIs) were first extracted using a defined workflow (Figure S2). The extracted ROls
were then subjected to preprocessing steps, including image enhancement, to improve the
model's generalization ability (Figure S3). Subsequently, the ROIs were divided into small
patches (512x512 pixels) for input into segmentation models (Table S2). Finally, a misaligned
cutting-overlapping stitching strategy was applied to integrate and quantitatively analyze the
patches across the whole slide (Figure S4).

Detection and delineation of cells and tissues

All the target identification algorithm models were trained using a supervised learning approach.
Based on the characteristics of cells and tissues in specific stained sections, we employed the
U?Net and UNeXt to segment cells and tissues in the hematoxylin-eosin (H&E)-stained section
and Gomori-stained section, respectively, and the ResNet-18 to classify granulocytes and
erythropoiesis. All models were trained in a PyTorch 1.8.0 cuda11.1 environment, using the
default initialization methods of PyTorch (Table S3). The performance of the segmentation
models is demonstrated through loss and Intersection over Union (loU) metrics, while the
performance of the classification models is represented by the area under the curve (AUC), the
confusion matrix, Accuracy, Precision, Recall, and F1 score. Next, we will elaborate on the
parameters optimized through multiple rounds of training, performance metric evaluations, and
the visual presentation of segmentation and classification results.

Segmentation model training for targets in H&E-stained sections

In H&E-stained sections, it's essential to evaluate marrow cellularity, myeloid-to-erythroid (M:
E) ratio, megakaryocyte morphology and distribution. Therefore, the targets for segmentation
in H&E-stained sections include hematopoietic tissues, fat cells, bone trabecula, granulocytes,
erythropoiesis, and megakaryocytes (Table S2).

For the segmentation task in H&E-stained sections, U?>-Net was used to process 512*512
pixels patches at various image levels. ' U2-Net consists of an encoding-decoding phase, which
is constituted by ReSidual Ublock (RSU) modules. Each RSU comprises an input convolution
layer (with a filter size of 3, stride of 1, and padding of 1) along with batch normalization layers
and rectified linear unit (ReLU), a U-Net-like symmetric encoding-decoding structure, and
residual connections. The encoder stage of U?-Net employs RSU structures with depths of 7,
6, 5, 4, 4, and 4, while the decoder mirrors the encoder's structure. The output convolutional
layer has a filter size of 1 and is followed by the Sigmoid, outputting the probability of each pixel
belonging to a specific target category. This allows for clear differentiation between the target
and background, achieving precise boundary delineation and segmentation of targets.

The hyperparameter settings are shown in Table S4. The training and validation datasets
of various targets for the U?-Net segmentation model are shown in Table S7. After three training
rounds, the U?-Net model achieved a high-accuracy segmentation of tissues with an loU of 0.8
+0.07 (Table S10). The visualization of segmentation results is presented in Figure S5A-E.



Classification model training for granulocytes and erythropoiesis

Immature myeloid and erythroid cells are challenging to distinguish visually based on an
experienced assessment. Three hematopathologists meticulously annotated granulocytes and
erythropoiesis independently in H&E-stained sections, and those consistent annotations were
taken as the standard training and validation sets. To evaluate the inter-observer consistency,
a subset of consistent granulocytes and erythropoiesis annotations (intersection) labeled by
three pathologists was selected as the test set and served as the ground truth (intersection).
Each pathologist’'s annotations were compared against the ground truth (Table S12). Results
indicate high inter-observer consistency and establish a reliable baseline.

After accurately segmenting granulocytes and erythropoiesis by U?-Net, we employ the
ResNet-18 classification model to differentiate between the two cell types. The image patches
of granulocyte and erythropoiesis were extracted from the original segmentation images based
on the size of the bounding rectangle of the segmentation mask (Figure S6). The ResNet-18 is
a variant of the ResNet architecture that is 18 layers deep. 2 The input convolutional layer has
a filter size of 7, followed immediately by a max pooling layer with a filter size of 2. The core
section of ResNet-18 consists of four residual blocks (each of which contains two convolutional
layers with a filter size of 3), with skip connections at the beginning and end of each residual
block to promote the flow of information. A global average pooling layer then simplifies the
feature map into a feature vector, which is ultimately processed by a fully connected layer and
a SoftMax activation function to output the probabilities of each category.

The hyperparameter settings of ResNet-18 are presented in Table S5. We performed one
training round on the model, which achieved a high accuracy in identifying granulocytes and
erythropoiesis, with an average AUC of 0.958 in fivefold cross-validation (Table S8 and S11),
and achieved an average detection rate of 0.89 (Figure S7). The visualization of the
segmentation results is shown in Figure S5D.

Segmentation model training for targets in Gomori-stained sections

The severity of marrow fibrosis (MF) in the Gomori-stained sections is another crucial bone
marrow feature of myeloproliferative neoplasm (MPN). This analysis necessitates precisely
segmenting reticular fibers and identifying bone trabecula and fat cells (Table S2).

The segmentation model architecture for Gomori-stained sections is based on UNeXt,
processing 512x512 pixels patches at various image levels. ® This network employs an
encoder-decoder architecture, where the encoder consists of three convolution blocks and two
tokenized multilayer perceptron (MLP) stages, while the decoder comprises two tokenized MLP
stages and three convolution blocks. Each convolutional block consists of one convolutional
layer, batch normalization, and a ReLU. The convolutional layer has a filter size of three, a stride
of one, and padding of one. In the encoder, a max pooling with a filter size of 2 follows the
convolution blocks for down-sampling, whereas the decoder utilizes bilinear interpolation layers
for up-sampling the feature maps. Features are processed through a Shift MLP before the
Tokenized MLP. The Tokenized MLP block consists of a projection layer, a width-shifted MLP
layer, a depth-wise convolution layer, a Gaussian Error Linear Unit (GeLU), and a height-shifted
MLP layer, in sequence, with output features passed through layer normalization to the next
block. The output is a segmentation map defined by the predictions for each pixel.



Hyperparameter settings for the UNeXt model are presented in Table S6. The training and
validation datasets of various targets for the UNeXt segmentation model are shown in Table S9.
After three training rounds, the UNeXt model achieved a relatively high accuracy segmentation
of tissues with an loU of approximately 0.7 (Table S13). The visualization of segmentation
results is presented in Figure S5F-H.

Quantitative analysis of various metrics in the morphological model
Bone marrow cellularity

Bone marrow cellularity is determined by the average ratio of the area occupied by
hematopoietic cells to the combined area of hematopoietic cells and fat cells within all valid
hematopoietic regions.  Therefore, the calculation of bone marrow cellularity is based on the
accurate segmentation of hematopoietic areas, fat, and bone trabecula. The segmentation of
related tissues with a hematopoietic area can be visualized as shown in Figure 2A and Figure
S5A-C. The identification of bone trabecula was used to correct the segmentation of the
hematopoietic areas. The actual area occupied by hematopoietic cells was determined by the
identified hematopoietic tissue region subtracted from the blank area.

The formula for the bone marrow cellularity is as follows:

Actual hematopoietic area

Bone marrow cellularity =

Actual hematopoietic area + Fat cell area

Since the bone marrow cellularity involves the intact hematopoietic areas, therefore,
fragmented tissue areas—those with smaller areas and incomplete fat cells should be excluded.
Fragmented tissues are quantified by the area less than 40000 ym? and a local hematopoietic
tissue proportion higher than the average proportion of hematopoietic tissue in the whole
sections. The overall bone marrow cellularity is then determined by the average ratio of the
area occupied by hematopoietic cells to the combined area of hematopoietic cells and fat cells
in the remaining areas.

Megakaryocyte morphology and distribution

Metrics related to megakaryocytes include the megakaryocyte size, nucleus, and distribution.
Regarding the megakaryocyte nucleus, we incorporated two indicators, the nuclear-
cytoplasmic ratio and the presence of naked nuclei. The literature did not provide a clear
numerical definition of megakaryocyte morphology. We quantitatively defined the two
characteristics based on the megakaryocytes in H&E-stained trephine sections from healthy
donors.

We took megakaryocyte cell size from healthy donors (n=8, total 380 cells) as the
reference megakaryocyte cell size range (Figure S8). Based on the 2.5th to 97.5th percentiles
to define the normal reference range, cells smaller than the 2.5th percentile were classified as
small megakaryocytes, while those larger than the 97.5th percentile were defined as large
megakaryocytes.

Image patches for each megakaryocyte can be extracted based on boundaries after
segmentation. Subsequently, each megakaryocyte image patch was processed based on the



color threshold to extract the cytoplasm and nucleus, enabling the calculation of the
nucleocytoplasmic ratio and the proportion of the nucleus for each megakaryocyte (Figure S9).
Similarly, we have taken the megakaryocyte nuclear-cytoplasmic ratio range among healthy
donors as the reference megakaryocyte nuclear-cytoplasmic ratio range. Larger than the 97.5th
percentile of the reference nuclear-cytoplasmic ratio range was determined as megakaryocytes
with a high nuclear-cytoplasmic ratio (Figure S10).

Three hematopathologists manually categorized megakaryocyte clusters into dense and
loose clusters in six H&E-stained section digital images and reviewed each other's work to
ensure annotation consistency. The distance between megakaryocytes was defined as the
distance between the centroids of two megakaryocytes minus the intracellular distance
between the megakaryocytes (Figure S11). The numerical characteristics of megakaryocyte
spacing were determined based on the manual annotations and clustering identified using the
density-based spatial clustering of applications with noise (DBSCAN) algorithm. 5

Fibrosis grading

In this phase, the slide images were segmented into larger patches (1536*1536 pixels, 0.263
pm per pixel) at 40X magnification to simulate the microscope insight for assessing fibrosis
severity. Patches with more than 60% blank area were excluded from the analysis. Three
hematopathologists independently classified the fibrosis grading of each patch (from 6 pre-PMF
and 2 PMF) into MF-0 to MF-3 based on the 2022 WHO diagnostic criteria and other official
consensus on grading bone marrow fibrosis. & Patches labeled with consistent fibrosis grading
across three hematopathologists (547 patches) were taken as the standard sets for the
following further analysis.

First, we extracted the effective fibrotic regions within each consistent annotated patch
(Figure S12) and then calculated the density of reticular fibers within these areas for each patch.
Based on the 2022 WHO diagnostic criteria, fibers in the MF-0 region predominantly appear as
single, non-crosslinked short fibers. ¢ Therefore, fibers in the MF-1, MF-2, and MF-3 regions
can be considered a dense accumulation of single short fibers. Therefore, the relative quantity
of fibers within the effective fibrotic areas, or the fiber density, can, to some extent, represent
the severity of fibrosis. After identifying the fibers by UNeXt, we can determine the number and
area of fibers in each patch. In 94 patches marked as MF-0 among standard sets, the total
number of fibers is 3818, with the area of a single fiber ranging from 3 to 50 (median, 8) ym>.
Next, in the patches of grades 1, 2, and 3 among standard sets, we calculate the fiber density
by dividing the total fiber area in each patch by the median area of a single fiber (8 um?),
obtaining the relative fiber quantity. Then, the fiber density in each patch is determined by
dividing the relative fiber quantity by the effective fibrotic area of the patch.

Next, we correlated these densities with the annotated fibrosis grading of each patch (MF-
0 to MF-3), determining the fibrous density corresponding to different fibrosis gradings of each
patch (Figure S13). This allows us to predict the fibrosis grading of unannotated patches.
Determine the fiber density for the effective fibrosis area within each patch to derive the fibrosis
grade for each patch of a biopsy section. Then, calculate the total effective fibrosis area for
patches with corresponding fibrosis grade (MF-0 to MF-3) and the overall effective fibrosis area
of the entire biopsy section. According to the 2022 WHO diagnostic criteria, using an area ratio
of 30% as the baseline, the highest fibrosis grade with an effective fibrosis area ratio exceeding



30% of the total effective fibrosis area will be the final fibrosis grade for the entire biopsy section
(Figure S14).

Classification

Fourteen pathological indicators were included in constructing the bone marrow classification
model (Figure 4A), and six clinical indicators contributed to a clinical classification model (Figure
4B). On this basis, all fourteen pathological indicators and six clinical indicators were
incorporated to build the comprehensive classification model (Figure 4C). The definition of
clinical indicators implemented in classification models is as follows: hemoglobin (Hb), white
blood cell count (WBC), platelet count (PLT), and lactate dehydrogenase (LDH) level were
analyzed as continuous variables using their raw quantitative measurements. While gene
mutation status and spleen sizes were analyzed as categorical variables. Gene mutation status
was categorized into “mutated” (presence of >1 driver mutation in JAK2, CALR, or MPL genes)
versus "Wild-type" (no detectable mutations). Splenomegaly grading was stratified into four
categories: absent, mild, moderate, or severe.

All classification models were random forest classifiers. The composition ratios of disease
samples in the training and validation sets are presented in Table S14.

The model parameters for those three classification models are identical. Each model
consists of 100 decision trees. For each tree, 80% of the original dataset samples are randomly
selected with replacements to form the training dataset. A certain number of features,
determined to be one-third of the total number of features, are randomly chosen to create a
feature subset. The classification and regression tree (CART) algorithm is then applied to
construct the decision tree based on the selected dataset and feature subset. ” No maximum
depth limit is set for the decision trees, and their growth stops when the number of samples at
a node decreases to less than two. The final prediction result is obtained by averaging the
prediction results of each tree.

Initially, 45 samples (45/342, 13%) were randomly selected from all 342 samples from our
center as the internal test set (Table S14). The remaining samples were randomly divided into
training and validation sets in an 80%/20% ratio and underwent 500 independent trials. In each
trial, three classification models—bone marrow, clinical, and comprehensive models—were
independently trained. Figure S15 presents the predicted performance of the three models in
the 500 independent trials. The classification performances of the final three classification
models are shown in Table S15.



Supplementary Tables

Supplementary Table 1. Clinical Characteristics of All Cohort from Our Center.

Blood counts (value) Mutation status (number) Splenomegaly (number)
Platelet count (10%L)  White cell count (10'%/L)  Hemoglobin (g/L) (M:;:nfL:;;)ge) TN JAK2 CALR MPL no mid moderate severe
(Median, range) (Median, range) (Median, range) (V617F)
MPN
ET (n=78) 771 (342-1680) 8.44 (3.12-23.62) 138.5 (59-182) 226.5 (142-536.9) 10 48 19 1 56 10 8
Pre-PMF (n=37) 918 (119-2562) 8.78 (3.06-36.12) 131 (66-159) 269.3 (159.7-482.7) 2 23 11 1 16 8 9 4
PMF (n=167) 218 (7-1541) 7.82 (0.67-196.23) 102 (37-190) 486 (141-2073.2) 16 108 39 4 14 9 54 90
PV (n=27) 576 (217-1387) 11.91 (4.32-25.44) 191 (124-235) 316.6 (142.4-533.4) 2 25 0 0 5 9 11 2
Nonneoplastic
Normal (n=8) 241 (166-291) 7 (4.66-10.98) 140 (128-184) 165.1 (113-260) 8 0 0 0 8 0 0 0
IDA (n=25) 264 (31-1191) 5.9 (1.27-16.78) 77 (35-113) 182.9 (107.2-1549) 25 O 0 0 15 6 2 2

Abbreviations: MPN, myeloproliferative neoplasm; ET, essential thrombocythemia; PMF, primary myelofibrosis; pre-PMF, prefibrotic PMF; PV, polycythemia vera; IDA, iron-deficiency anemia; LDH,

lactate dehydrogenase; TN, triple-negative.

Supplementary Table 2. Hierarchical Processing of Various Tissues in Bone Marrow Trephine Section.

Pixel
. . . Segmentation L . . . Image Patch  Number of Annotated Slides
Section Research Metric Tissues Magnification @ Hierarchies Size . . .
Model (um) Size (pixel) * (Total Annotated Cells/Tissue)
H&E-stained Fat 10X Level 1 1.052 512*512 32 (53559)
section Marrow cellularity Bone U?-Net 10X Level 1 1.052 512*512 50 (7240)

Hemopoietic tissue 10X Level 1 1.052 512*512 50 (1430)




Myeloid-to- Granulocyte &

U2-Net

, . o 80X NA ¢ 0.132 512*512 87 (89449) ¢

erythroid ratio Erythropoiesis
Megakaryocyte Megakaryocyte U?-Net 40X Level O 0.263 512*512 141 (33217)
Fibrosis 20X Level 0.5 0.526 512*512 52 (98464)

Gomori-stained ] ) )
i Fibrosis severity Fat UNeXt 10X Level 1 1.052 512*512 37 (63354)
section

Bone 10X Level 1 1.052 512*512 50 (11870)

2The specific magnifications were determined by the visual observation of hematopathologists and the requirement of the model development.

®The actual size of each pixel depended on the specific magnification corresponding to specific stained sections, aimed at accurately matching the characteristics of various cells and tissues.

¢Pixel scaling has no corresponding hierarchy.

4 Granulocytes and erythropoiesis were annotated jointly, with the reported value representing the sum of both. Given the significant quantity of erythropoiesis and granulocytes present in a single

section image, and to account for variability across different samples, annotations of these cells are performed within selected regions on each image rather than comprehensive annotation across

the entire slide, which was the approach used for the annotations of other tissues.

Abbreviations: H&E-stained section, hematoxylin-eosin-stained section.



Supplementary Table 3. Model Training Environment Configurations.

Configurations

CPU Intel(R) Xeon(R) Gold 6226R @2.90GHz
GPU Tesla A100 40G
System Platform Cent0S 7.3

Deep Learning
PyTorch 1.8.0 cuda11.1
Framework

Abbreviations: CPU, Central Processing Unit.

Supplementary Table 4. Hyperparameters of the U2?-Net Model for
Segmentation Applied in H&E-stained Section.

Tissue Granulocyte &
Fat Bone Hemopoietic tissue Megakaryocyte
Parameter Erythropoiesis
Batch Size 16 16 16 16 16
Learning Rate 0.001  0.001 0.001 0.001 0.001
Optimizer Adam Adam Adam Adam Adam
Epochs 250 200 200 200 200
Loss function Cross Entropy Loss

Abbreviations: H&E-stained section, hematoxylin-eosin-stained section; Adam, Adaptive Moment estimation.

Supplementary Table 5. Hyperparameters of the ResNet-18 Model for
Identifying Granulocytes and Erythropoiesis.

Tissue
Granulocyte & Erythropoiesis
Parameter
Batch Size 32
Learning Rate 0.001
Optimizer SGD
Epochs 80
Loss function Cross Entropy Loss

Abbreviations: SGD, Stochastic Gradient Descent.

Supplementary Table 6. Hyperparameters of the UNeXt Model for
Segmentation Applied in Gomori-stained Section.

Tissue
Bone Fat Fibrosis
Parameter

Batch Size 16 16 16




Learning Rate 0.001
Optimizer Adam
Epochs 200

Loss function

0.001
Adam
250

Cross Entropy Loss

0.001
Adam
250

Abbreviations: Adam, Adaptive Moment estimation.



Supplementary Table 7. Training and Validation Image Patches and Samples for the U2-Net Model in H&E-stained Section.

H&E-stained Initial round 1st round 2nd round 3rd round

section Training Validation Training Validation Training Validation Training Validation Samples
Hemopoietic tissue 1796 316 2874 507 7185 1264 8980 1585
Fat 2507 443 3449 608 8622 1521 14750 2594 165
Bone trabecula 1734 301 2737 483 6842 1206 13435 2061
Granulocyte &
Erythropoiesis 3163 558 5435 959 7165 1264 42150 7435 049
Megakaryocyte 3094 547 5396 923 7901 1394 63034 11123

Abbreviations: H&E-stained section, hematoxylin-eosin-stained section.

Supplementary Table 8. Training and Validation Image Patches and Samples for the ResNet-18 model in identifying
granulocytes and Erythropoiesis.

H&E-stained section 1 st round
Samples
Training Validation
Granulocyte 37816 8703
Erythropoiesis 20113 3549 249
Total 57929 12252

Abbreviations: H&E-stained section, hematoxylin-eosin-stained section.



Supplementary Table 9. Training and Validation Image Patches and Samples for the UNeXt Model in Gomori-stained

Section.
Gomori-stained Initial round 1st round 2nd round 3rd round
Samples
section Training Validation Training Validation Training Validation Training Validation
Fibrosis 1808 375 2823 423 4454 658 12220 2155
Fat 2175 384 3245 572 4300 602 12795 2255 132
Bone trabecula 1856 328 2284 296 4051 576 11420 2015




Supplementary Table 10. Segmentation Performance of the U2-Net Model

Applied in H&E-Stained Section.

Initial round 1st round 2nd round 3rd round
Hemopoietic tissue
Loss 1.6045 0.5902 0.4373 0.4570
loU 0.62 0.70 0.73
Fat
Loss 0.8655 0.6580 0.3459 0.2586
loU 0.60 0.71 0.76
Bone trabecula
Loss 0.2473 0.1182 0.1301 0.1364
loU 0.76 0.85 0.87
Megakaryocyte
Loss 1.2949 0.8426 0.6950 0.5209
loU 0.75 0.74 0.82
Erythropoiesis & Granulocyte
Loss 1.2714 0.7977 0.4874 0.4541
loU 0.79 0.78 0.81

Abbreviations: H&E-stained section, hematoxylin-eosin-stained section; loU, Intersection over Union.

Supplementary Table 11. Fivefold Cross-validation of the ResNet-18
Model Applied in Identifying Granulocyte & Erythropoiesis.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average
AUC 0.957 0.958 0.959 0.959 0.958 0.958
Accuracy 0.961 0.962 0.967 0.962 0.963 0.963
Precision 0.955 0.956 0.958 0.955 0.957 0.957
Recall 0.961 0.961 0.962 0.961 0.961 0.961
F1 score 0.958 0.959 0.960 0.959 0.960 0.958

Abbreviations: AUC, area under the curve.

Supplementary Table 12. Segmentation Performance of the UNeXt Model

Applied in Gomori-Stained Section.

Initial round 1st round 2nd round 3rd round

Fibrosis

Loss 0.6522 0.1625 0.1315 0.0973

loU 0.27 0.41 0.53 0.57
Fat

Loss 0.7027 0.2621 0.0793 0.0672

loU 0.43 0.51 0.50 0.63
Bone trabecula

Loss 0.5571 0.0564 0.0515 0.0499

loU 0.63 0.75 0.74 0.78

Abbreviations: loU, Intersection over Union.



Supplementary Table 13. Inter-observer Consistency and Model
Overfitting Evaluation.

Granulocyte identification Erythropoiesis identification

FNR FPR Precision Recall FNR FPR Precision Recall
Intersection VS User1  0.000 0.053 0.94 1 0.000 0.215 0.78 1
Intersection VS User2 0.000 0.025 0.97 1 0.006 0.081 0.91 1
Intersection VS User3 0.000 0.050 0.94 1 0.000 0.081 0.91 1
Al VS Intersection 0.065 0.194 0.78 0.93 0.180 0.186 0.82 0.82
Al VS User1 0.065 0.257 0.7 0.93 0.109 0.323 0.69 0.89
Al VS User2 0.069 0.218 0.76 0.93 0.146 0.222 0.78 0.85
Al VS User3 0.057 0.248 0.72 0.94 0.176 0.240 0.76 0.82

Evaluation of inter-observer baseline, segmentation performance, and overfitting in the ResNet-18 classification model.
The False Negative Rate (FNR) was used to quantify the missed detection rate, defined as the proportion of actual
positive samples incorrectly classified as negative. The False Positive Rate (FPR) was employed to describe the false
detection rate, representing the proportion of actual negative samples erroneously classified as positive. The
intersection refers to a subset of consistent annotations provided by three pathologists (User1, User2, and User3),
serving as an uncontested diagnostic consensus. "Al” denotes the annotations predicted by the ResNet-18
classification model. Inter-observer consistency was evaluated by comparing each pathologist’s annotations with the
intersection, while model performance was assessed by comparing its predictions with both the intersection and
individual pathologist annotations. These comparisons demonstrate the model’s reliability and confirm that it is not
overfitting to any specific pathologist.

Abbreviations: FNR, false negative rate; FPR, false positive rate; Al, artificial intelligence.

Supplementary Table 14. Datasets for Random Forest Models Applied in
Differentiating Nonneoplastic and MPN Subtypes.

Internal External
Total Training Validation Test Test
(samples, n) (samples,n) (samples,n) (samples, n) (samples, n)

ET 78 55 13 10 19

Pre-PMF 37 26 6 5 20

PV 27 18 4 5 38

PMF 167 117 30 20 19

Nonneoplastic 33 22 6 5 10

Total 342 238 59 45 106

The number of samples utilized for the training and validation sets in the table corresponds to the quantity extracted
for each random experiment.
Abbreviations: MPN, myeloproliferative neoplasm; ET, essential thrombocythemia; PMF, primary myelofibrosis; pre-

PMF, prefibrotic PMF; PV, polycythemia vera.



Supplementary Table 15. Classification Performances of Classification

Models Applied in Differentiating Nonneoplastic and MPN Subtypes.

ET Pre-PMF PMF PV Nonneoplastic Macro Micro
Internal  Bone marrow model
test set AUC 091 092 1 098 1 096 08
Accuracy 0.8 0.8 0.8 0.8 0.8 0.8 0.8
Precision  0.67 04 1 0.67 0.83 0.71 0.8
Recall 0.6 0.4 0.95 0.8 1 0.75 0.8
F1score 0.63 0.4 0.97 0.73 0.91 0.73 0.8
Clinical model
AUC 0.9 0.84 0.95 0.88 1 0.92 0.78
Accuray 0.73 0.73 0.73 0.73 0.73 0.73 0.73
Precision 0.7 0.67 0.74 0.67 0.83 0.72 0.78
Recall 0.7 0.4 0.85 0.4 1 0.67 0.73
F1 score 0.7 0.5 0.79 0.5 0.91 0.68 0.73
Comprehensive model
AUC 0.94 0.94 0.96 0.97 1 0.96 0.8
Accuracy 0.85 0.85 0.85 0.84 0.85 0.85 0.85
Precision  0.64 0.5 1 1 1 0.83 0.84
Recall 0.7 0.6 0.95 0.8 1 0.81 0.84
F1score 0.67 0.55 0.97 0.89 1 0.82 0.84
External
Bone marrow model
test set
AUC 0.95 0.84 1.0 0.92 0.99 0.94 0.58
Accuracy 0.84 0.84 0.84 0.84 0.84 0.84 0.84
Precision  0.76 0.73 0.95 0.86 0.82 0.82 0.84
Recall 0.84 0.53 1.0 0.84 1.0 0.84 0.84
F1 score 0.8 0.62 0.97 0.85 0.9 0.83 0.84

Abbreviations: MPN, myeloproliferative neoplasm; ET, essential thrombocythemia; PMF, primary myelofibrosis; pre-

PMF, prefibrotic PMF; PV, polycythemia vera; AUC, area under the curve.



Supplementary Figures

Supplementary Figure 1. Flowchart of MPN (n=309) and Nonneoplastic
(n=33) Case Selection Process.

Samples from internal dataset

ET n=102, pre-PMF n=44
PV n=30, PMF n=206
HD n=8, IDA n=29

Y

419 were identified through EMR

34 were excluded
30 did not have complete clinical information
ET n=8, pre-PMF n=3
PV n=2, PMF n=15, IDA n=2
4 were not retrievable
ET n=2, PMF n=2

Y

Y

385 were retrieved
from archive

ET n=92, pre-PMF n=41
PV n=28, PMF n=189
HD n=8, IDA n=27

Y

43 were excluded
13 insufficient tissue
> ET n=4, PMF n=7, IDA n=2
16 outdated or contaminated
ET n=6, pre-PMF n=1
PV n=1, PMF n=8
14 evident cortical
ET n=4, pre-PMF n=3, PMF n=7

Y ET n=78, pre-PMF n=37
342 were of eligibility PV n=27, PMF n=167
HD n=8, IDA n=25

Y

v A4 A4
238 for training set 59 for validation set 45 for test set

The plot illustrates the inclusion and exclusion flowchart for samples in the internal dataset, with samples from the
external dataset enrolled based on the same criteria. For inclusion, each slide must encompass sufficient tissue (> 0.5
x0.2 cm2 for each). Outdated or contaminated slides were excluded. Additionally, biopsies displaying evident cortical
bone or severely fragmented tissue, thereby hindering the assessment of hematopoietic status, were also excluded.

Abbreviations: MPN, myeloproliferative neoplasm; EMR, electronic medical record; ET, essential thrombocythemia;
PMF, primary myelofibrosis; pre-PMF, prefibrotic PMF; PV, polycythemia vera; HD, healthy donor; IDA, iron-deficiency

anemia.

Supplementary Figure 2. The Extraction of the Region of Interest (ROI).
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A&B. The original image was transformed into an image within the HSV color space, a visible light subset in a three-
dimensional color space composed of Hue (H), Saturation (S), and Value (V). C. By conducting color localization
tracking on the bone marrow tissue within the HSV color space and calculating the HSV thresholds, a color mask can
be constructed based on these threshold values. Applying bitwise operations to the original image and this mask yields
the effective area of the bone marrow slide as illustrated in the image. D. Further morphological transformations,
including erosion, dilation, and contour area threshold filtering, were applied for refinement. And the area within the
bounding rectangle was the Region of Interest (ROI).

Supplementary Figure 3. The Pre-processing of Whole Slide Images
(WSls).
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Image Augmentation techniques were applied to the Whole Slide Images (WSIs) to enhance the generalizability of the
image recognition model. These included symmetrical transformations, rotation, HSV color space conversion,
histogram equalization, blurring, motion blur, distortion, elastic deformation, inversion, channel scraping, Gaussian
noise, salt-and-pepper noise, random brightness changes, random contrast adjustments, grayscale modifications,

enhanced elastic deformations, and staining enhancement methods specific to H&E-stained sections targeting eight



staining gradients.

Supplementary Figure 4. Misaligned Cutting-Overlapping Stitching
Strategy.

For structural segmentation of images, initial misaligned splitting into small image patches (512*512 pixels) is
performed, followed by inference on each patch and subsequent reassembly into the original image size. This
misaligned splitting and overlapping reassembly strategy enhances image segmentation accuracy while eliminating
seam marks from image assembly, improving overall visualization.

Supplementary Figure 5. Visualization of the Segmentation of Cells and
Tissues.
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A-E. The segmentation of targets in hematoxylin and eosin-stained section by U2-Net model and the identification of
granulocyte and erythropoiesis by RseNet-18 model. F-H. The segmentation of targets in Gomori-stained section by
UNeXt model.

Supplementary Figure 6. Input Image Patches Sizes of Granulocytes and
Erythropoiesis for ResNet-18 Model.
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Due to the small size of granulocytic and erythroid cells, which also vary in size, each image patch was resized by pixel
scaling to 6464 pixels (16.768 um per pixel) to facilitate model training. Each image patch contains only one cell, thus
the number of patches used corresponds to the number of cells.

Supplementary Figure 7. The Confusion Matrix of the ResNet-18 Model in
Recognizing Granulocyte & Erythropoiesis.



0.9

0.8

Granulocyte

L
[
el
)
©
[
i
&=

g - 0.4
j =
o

Erythropoiesis - -0.3

- 0.2

T = 01

2 O
& &
© o
) oQ
> &
S &
<

Intersection

The confusion matrix was generated to evaluate the performance of the ResNet-18 model in identifying granulocytes
and erythropoiesis in the test set. The test set was defined as a subset of consistent annotations (intersection) provided
by three pathologists, serving as the “gold standard”. Predicted labels were derived from the ResNet-18 model. The
model achieved an average detection rate of 0.89.

Supplementary Figure 8. Area Range of Megakaryocytes from Healthy
Donors.
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Supplementary Figure 9. Analysis for Nuclear-cytoplasmic Ratio and
Nuclear Proportion of Megakaryocyte.
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Image patches for each megakaryocyte could be extracted based on delineated boundary after segmentation (A). Then,

cytoplasm and nuclei were extracted from each megakaryocyte image patch using color thresholding (B), enabling the



calculation of individual nucleo-cytoplasmic ratio and nuclear proportion (nuclear ratio) (C). The nuclear-cytoplasmic

ratio is calculated by nuclear area / (total cell area — nuclear area). The nuclear proportion (nuclear ratio) is calculated

by nuclear area / total cell area.

Supplementary Figure 10. Nuclear-cytoplasmic Ratio Range of
Megakaryocytes from Healthy Donors.
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The nuclear-cytoplasmic ratio is calculated by nuclear area / (total cell area — nuclear area), as shown in Supplementary

Figure 9.

Supplementary Figure 11. Visualization of Megakaryocyte Centroids and
Intercellular Spacing.



A. Original image at 40X magnification. B. Megakaryocytes (green) and their centroids (red); the centroid of a
megakaryocyte represents its geometric center, calculated by averaging the positions of all pixels within the
megakaryocyte. C. Distances between megakaryocyte centroids (purple lines). D. Actual distances between
megakaryocytes (pink lines), which were determined by subtracting the internal distance of a megakaryocyte from the
centroid distance.

Supplementary Figure 12. The Extraction of Effective Fibrosis Area.
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The effective fibrosis region within each patch was calculated as the total area of the patch minus the regions of bone

trabecula and blank area.

Supplementary Figure 13. Analysis of Fiber Density for Each Image Patch.
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Fiber density is the ratio of the number of fibers and the effective fibrosis region within each image patch. The box plot
demonstrates the clear separation in fiber density among patches of different levels, allowing for the grading calculation
of individual patches based on fiber density within the patch. MF-0: fiber density ~1550.863; MF-1: 1550.863 ~16384.87;
MF-2: 16384.87 ~28336.58; MF-3: 28336.58~ .

Supplementary Figure 14. Visualization of the severity of fibrosis.

; 'k
y
bt I -
) b [
o ™ b
e o
e s b |
=
D - e ¥
bl S N
2 'A;
g et Sl e
' 1 I
| Jaode S
T 'y ‘
’ R 2161
= : 4
¢
> »

An image of a section sample leveled as MF-1 at 1X magnification. Grid colors of small image patches correspond



to fibrosis grades green represents MF-0, yellow represents MF-1, pink represents MF-2, red represents MF-3, and
blue represents the original patches (pre-grading or excluded from the assessment of fibrosis grade). The fibrosis level
was calculated based on the regions with the highest level of effective fibrosis exceeding 30%. The prediction of the

fibrosis level of individual samples (MF-0~1 and MF-2~3) achieved an accuracy of 0.916.

Supplementary Figure 15. Performances of The Three Classification
Models in the Internal test set (n=45).
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The number of samples that were accurately predicted

The distribution of correct predictions made by the bone marrow, clinical, and comprehensive models on the internal
test set across 500 independent trials. The x-axis represents the number of correctly predicted samples by the three
classification models in each independent trial. The y-axis represents the total count of occurrences for each value on
the x-axis across 500 trials. The plot showed that the three classification models' highest frequency of correct

predictions occurs at 32, 36 and 38 samples, respectively.

Supplementary Figure 16. Visualization of Categorizing Nonneoplastic
and MPN subtypes by Classification models.
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PCA plots illustrate the separation among non-MPN and MPN subtypes through the bone marrow, clinical, and

comprehensive classification models.

Supplementary Figure 17. Classification Performances of Classification

Models Applied in Differentiating Nonneoplastic and MPN Subtypes.
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The classification performance of models on the internal and external test sets are shown in the confusion matrices.

A-C. The classification performance of the internal test set is shown for the bone marrow, clinical, and comprehensive

classification model, with average precisions of 0.75, 0.67, and 0.81, respectively. D. The classification performance of

the external test set is presented for the bone marrow classification model, achieving an average precision of 0.842.

When misclassifications occurred, ET and pre-PMF were most frequently mistaken for one another.

Abbreviations: MPN, myeloproliferative neoplasm; ET, essential thrombocythemia; pre-PMF, prefibrotic PMF; PMF,

primary myelofibrosis; PV, polycythemia vera.
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