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Measurable residual disease (MRD) in acute myeloid leukemia (AML), defined as the 
presence of a quantifiable number of leukemic cells after therapy, is an independent prognostic 
factor of relapse-free survival and informative in guiding post-remission therapy.1-3 MRD is 
monitored with high-sensitivity methods such as molecular techniques (e.g., detection of core-
binding factor rearrangements or NPM1 mutations) or multiparameter flow cytometry (MFC).1, 2, 

4 The advantages of MFC MRD include its high applicability, sensitivity, and short turnaround 
time.5 However, a major disadvantage of using MFC for MRD is the need for manual analysis 
and interpretation of data, which requires extensive knowledge and expertise, and may not be 
entirely reproducible.3, 5 Machine learning (ML) has shown great promise in the medical field by 
providing novel methodologies for diagnosis, prognosis, and treatment.6 ML is broadly defined 
as the creation of mathematical models to find patterns and relationships in data. For AML MRD 
detection, ML models have the potential advantages of being objective, reproducible, and fast. 
Although previous studies have shown the feasibility of both unsupervised and supervised ML in 
AML MRD analysis,7-11 their limitations include few fluorochromes in the flow cytometry panel 
or events analyzed, or a focus on specific leukemia-associated immunophenotypes (LAIP) that 
are present in only a fraction of cases such as CD7 positivity. Recently, a study explored the 
addition of an ML model to the MRD workflow as a complementary tool with promising results, 
however, manual analysis was still required.12  

We hypothesized that a fully automated ML approach for MRD detection would address 
these previous limitations and result in a performance that is at least equivalent to manual MRD 
gating, while reducing the cost and time of analysis. For our single-center study, we compared 
the performance of three ML models: support vector machine (SVM), light gradient-boosting 
machine (LGBM), and random forest classifier (RFC). These models were compared in their 
ability to classify each individual cell within patient samples in a training dataset using a nested 
cross-validation approach13. This was followed by evaluation of the best performing model 
(RFC) in two independent patient cohorts representative of real-world clinical cases. 
Specifically, we tested: 1) whether the immunophenotype of the leukemic cells can be predicted 
correctly, 2) if there is agreement between the percentage of predicted MRD and MRD analyzed 
manually by experts, and 3) whether the model’s prediction is robust enough to allow us to 
determine MRD status based on the current clinically accepted cut-off point of 0.1%.1 

For our study, a total of 212 non-acute promyelocytic leukemia post-therapy bone 
marrow aspiration specimens (Supplemental Table S1), analyzed in an ISO 15189-accredited 
laboratory according to European LeukemiaNet and EuroFlow guidelines,1, 2, 5, 14 were selected. 
All patients or their guardians provided written informed consent according to the declaration of 
Helsinki. The study was conducted in accordance with all relevant national ethical regulations 
and guidelines. Data analysis was blinded regarding patient demographics and treatment 
protocols. Patient inclusion criteria were 1) identical antibody panels, 2) sufficient cellularity, 
and 3) stable fluidics during acquisition. Samples were processed by bulk lysis and subsequently 
stained with a cocktail of 9 fluorochrome-conjugated antibodies: HLA-DR Pacific Blue 
(Biolegend, cat. #307624), CD45 OC515 (Cytognos, #CYT-45OC), CD38 FITC (BC Life 
Sciences, #A07778), CD13 PE (BD Life Sciences, #347406), CD34 PerCP-Cy5.5 (Biolegend, 
#343522), CD117 PE-Cy7 (BC Life Sciences, #B49221), CD33 APC (BD Life Sciences, 
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#345800), CD56 APC-R700 (BD Life Sciences, #565139), and CD19 APC-C750 (Cytognos, 
#CYT-19AC750-2). For every sample, one million nucleated cells were acquired on a BD 
FACSLyric™ cytometer (BD Life Sciences). Manual analysis, defined as the gold-standard, was 
performed using the combination of leukemia-associated immunophenotype and different-from-
normal approaches15 with Infinicyt™ software (BD Life Sciences). 

To train the ML model, 132 patients were randomly selected from our database 
(including 104 MRD-negative and 28 -positive samples (Figure 1A). The training dataset was 
generated using the following approach: for every case, all normal bone marrow populations, as 
well as residual leukemic cells (if present) were manually gated based on their 
immunophenotypic profile using Infinicyt™ software (Supplemental Figure S1). After debris 
and doublet removal, analyzed files were merged and each population was individually exported 
as a comma-separated values (CSV) file, containing 12 columns (9 fluorescent and 3 scatter 
parameters [FSC-A, FSC-H, and SSC-A]) and variable number of rows (cells). A column was 
added to annotate the population. A “batch” column was included to divide patients into 5 
batches (stratified according to date of acquisition) for batch effect evaluation and K-fold nested 
cross-validation. To balance the population classes, a maximum of 1,000,000 cells from 
abundant populations (e.g., “T- and NK-cells”) were randomly selected except for “Residual 
Leukemic Cells” (to preserve all these cells for training). All files were concatenated, resulting in 
a single tabular file containing 11,819,872 cells, signal intensities, annotations, and batch 
numbers (Table 1), that was used for training and nested cross-validation. 

A uniform manifold approximation and projection (UMAP) graph was created to explore 
the training dataset which demonstrated no batch effect (Figure 1B). For every model tested, 
hyperparameter optimization was performed using StratifiedGroupKFold and GridSearchCV 
(from scikit-learn package) on the validation sets (i.e., inner folds). Subsequently, the test sets 
(i.e., outer folds) were used to assess the performance of SVM, LGBM, and RFC models, which 
resulted in average total accuracies of 0.628, 0.877, and 0.914, respectively (n = 5, Table 1, 
Supplemental Figure S2A). Among the three models tested, RFC performed superiorly overall 
with higher accuracy and “Residual Leukemic Cells” F1-score16 and thus was chosen as the 
testing model. Final training of the RFC model was performed on the whole dataset, as outlined 
in the annotated python script provided online
(https://www.github.com/aavhd/AML_MRD_ML).  

Following RFC model training, we tested its performance on two independent cohorts 
comprising cases not previously “seen” by the model: a first test cohort of 30 samples selected 
randomly (herein named “retrospective”) and a second cohort of 50 consecutively selected 
patients (named “prospective”) to better simulate a real-world setting. The test cohorts 
constituted actual raw ungated flow cytometry standard (FCS) files selected independently of the 
training cohort. The retrospective test cohort included 15 MRD-negative and 15 -positive cases 
with MRD range of 0.24-84.6% in positive patients. The prospective test cohort comprised 33 
MRD-negative and 17 -positive patients with a similar MRD range of 0.18-72.2% in positive 
cases. Similarly to the training dataset, no batch effect was observed in test cohorts 
(Supplemental Figure S2B). The approach to analyze test cases (all automated in our code) is as 
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follows: 1) The raw FCS file is loaded using FlowIO package, and the spillover matrix is 
extracted using FlowUtils package. 2) Event data is compensated, channel numbers are 
transformed using FlowCal package, and plain doublets are removed using FSC-A/FSC-H ratio. 
3) Every event is classified by RFC. 4) White blood cells are selected (“Erythroid Cells” and 
“Erythroid Precursors” excluded), and population percentages are calculated and saved as a CSV 
file. 5) Finally, a plotting function is called to visualize “Residual Leukemic Cells” based on 
desired parameters, and the plots are saved as figures (see code for further details). 

The RFC model allowed the recognition of aberrant MRD immunophenotypes, indicative 
of its ability to use relevant structures in data for prediction (Figure 1C). Additionally, to add 
explainability to the pipeline, we used local interpretable model-agnostic explanations (LIME)17 
to derive the importance given to the most relevant features for a given prediction; e.g., CD19+ 
and CD45- being most important to predict “Mature B-Cells” and “Erythroid Cells”, respectively 
(Figure 1D). The model’s performance can be interpreted by LIME denoting underlying 
biological explanations. To evaluate the classification report on a case-by-case basis, 10 cases 
from retrospective and prospective test cohorts (5 each) were randomly selected (Supplemental 
Figure S2C). “Erythroid Cells” and “T and NK Cells” showed the best predictions (average F1-
scores of 0.993 and 0.990, respectively). “Normal Myeloid Precursors” showed an acceptable 
average F1-score of 0.618, while “Residual Leukemic Cells” showed inferior performance on the 
account of being detected in MRD-negative cases (average F1-score of 0.426, range of 0.213-
0.929). To further evaluate the strength of agreement in MRD percentage between manual 
analysis and RFC, a correlation analysis for all cases (n = 80, including 64 remission cases) was 
performed (Figure 1E). The analysis showed good correlation with manual gating for leukemic 
cell percentage in all cases with Spearman’s ρ of 0.74 (0.84 and 0.71 for retrospective and 
prospective cohorts, respectively, P < 0.0001). However, the same analysis for only remission 
cases demonstrated weak correlation due to detection of residual leukemic cells in cases 
identified as MRD-negative by manual analysis (Spearman’s ρ = 0.45 [0.57 and 0.46 for 
retrospective and prospective cohorts, respectively, P = 0.0001]). We think that this is likely due 
to the misprediction of “Normal Myeloid Precursors” as MRD since the model showed reliable 
performance in identifying all myeloid precursors (normal and abnormal) in all cases 
(Spearman’s ρ = 0.90 [0.94 and 0.88 for retrospective and prospective cohorts, respectively, P < 
0.0001]), as well as other normal populations (Supplemental Figure S2D). We think that the 
difficulty of distinguishing malignant from normal myeloid precursors is related to the lack of 
specific surface protein markers delineating these two populations in our current flow cytometry 
panel, as well as subtle immunophenotypic differences in myeloid marker expression patterns, 
suggesting that the model’s performance could be enhanced with inclusion of more specific 
markers such as CD123, TIM3, and CLEC12A.2, 18 The degree to which these markers could 
improve the results must be studied with new panels. 

Our final question was to evaluate the model’s performance in classifying patients into 
MRD-positive and -negative groups with the commonly accepted clinical cut-off of 0.1%.1, 2 At 
this prespecified cut-off, the model predicted most cases to be positive due to assigning “Normal 
Myeloid Precursors” as “Residual Leukemic Cells” and only two cases were true negatives 
(Table 2). Upon evaluating the best cut-off point in terms of performance, cut-offs of 0.6% and 
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0.8% were found to be optimal with areas under the curves (AUCs) of 0.90 and 0.85 in 
retrospective and prospective test cohorts, respectively (Figure 1F, Table 2). The assessment of 
agreement in MRD percentage between RFC and manual analysis demonstrated a strong 
correlation for the proposed cut-off of 0.8% (Spearman’s ρ = 0.93, n = 26, P < 0.0001). To 
estimate the clinical benefit of this ML pipeline, we evaluated the frequency of cases in this 
category at our center. Among 256 consecutive cases that were referred to the lab for MRD 
monitoring in one year, 75 (29%) were MRD-positive above the 0.8% level and 26 (10%) had 
MRD levels between 0.1-0.8%, while the rest were MRD-negative (61%). Regarding the runtime 
performance for every patient in both cohorts, an average runtime of 3.6 seconds (range = 0.8-
4.9) was achieved on a personal laptop with 8 CPU cores. Therefore, we estimate that this model 
allows the reliable triage of ~30% of cases (especially relapsed patients) in seconds, representing 
a significant time saving. 

Altogether, we created an automated ML model to identify and quantify residual 
leukemia in AML. Our model could reliably detect MRD above the cut-off of 0.8% (sensitivity 
82% and specificity 88%) in two independent test cohorts. These values, while encouraging, are 
above the common 0.1% clinical cut-off, meaning that cases with MRD reported below 0.8% 
using this approach still need to be analyzed manually. This ML pipeline (publicly available at 
https://www.github.com/aavhd/AML_MRD_ML) is written in a way which can be used for 
training different panels with various numbers of fluorochromes, even for other purposes, such 
as B- or T-acute lymphoblastic leukemia MRD. Different from other AML MRD detection 
algorithms,10-12 this automated approach does not require clustering or dimensionality reduction 
steps, while achieving promising performance in two independent test cohorts. As for every ML 
approach, the quality of the acquisition process, such as fluidics stability, must be optimal for 
accurate model results. In addition, every laboratory requires a validated workflow and quality-
controlled flow cytometers to collect a dataset specific to their panel and train their model 
accordingly. 

Overall, our work constitutes an important contribution to the development of a fully 
automated ML approach in AML MFC residual leukemia monitoring. The model’s performance 
might be improved by increasing the number of training cases, exploring larger hyperparameter 
spaces, incorporating diagnostic information into the training data, and adding markers that 
would distinguish normal myeloid progenitors and residual leukemia. Future prospective studies 
with more patients and multi-center validation will be informative in this regard. 
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Table 1. Cell proportions in training dataset and classification report of testing for SVM, LGBM, and RFC after nested cross-validation. 

  
Average precision Average recall Average F1-score 

Population 
#Cells in 

training dataset 
SVM LGBM RFC SVM LGBM RFC SVM LGBM RFC 

B-cell precursors 807,460 0.716 0.957 0.961 0.860 0.949 0.951 0.754 0.953 0.956 

Basophils 153,289 0.738 0.879 0.911 0.040 0.906 0.942 0.073 0.890 0.924 

Eosinophils 1,000,000 0.895 0.979 0.989 0.891 0.978 0.987 0.888 0.979 0.988 

Erythroid cells 1,000,000 0.988 0.993 0.995 0.766 0.996 0.996 0.802 0.994 0.996 

Erythroid precursors 261,226 0.847 0.875 0.908 0.462 0.863 0.898 0.571 0.866 0.901 

Mast cells 30,422 0.669 0.595 0.630 0.353 0.438 0.476 0.442 0.480 0.488 

Mature B-cells 445,746 0.897 0.929 0.925 0.671 0.939 0.919 0.750 0.933 0.921 

Mature monocytes 1,000,000 0.625 0.848 0.896 0.824 0.875 0.913 0.661 0.861 0.904 

Monoblasts and promonocytes 1,000,000 0.817 0.793 0.813 0.280 0.800 0.882 0.369 0.795 0.843 

Myelocytes, metamyelocytes and band cells 1,000,000 0.485 0.879 0.915 0.402 0.895 0.921 0.308 0.886 0.918 

Normal myeloid precursors 956,754 0.673 0.714 0.809 0.284 0.863 1.000 0.306 0.779 0.893 

Plasma cells 134,750 0.774 0.966 0.970 0.914 0.946 0.957 0.831 0.955 0.964 

Plasmacytoid dendritic cells 240,712 0.237 0.736 0.820 0.180 0.768 0.801 0.138 0.748 0.810 

Promyelocytes 739,529 0.675 0.892 0.911 0.697 0.897 0.921 0.578 0.893 0.914 

Residual leukemic cells 1,049,984 0.388 0.726 0.925 0.641 0.503 0.588 0.392 0.591 0.710 

Segmented neutrophils 1,000,000 0.937 0.922 0.937 0.586 0.944 0.959 0.686 0.933 0.948 

T- and NK-cells 1,000,000 0.976 0.987 0.991 0.919 0.992 0.997 0.944 0.990 0.994 

Total #cells 11,819,872 
   

Average total accuracy 0.628 0.877 0.914 

LGBM, light gradient-boosting machine; NK, natural killer; RFC, random forest classifier, SVM, support vector machine. 
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Table 2. Confusion matrix demonstrating the performance of the model with different cut-offs. 

  
Retrospective test cohort (n = 30) Prospective test cohort (n = 50) 

 
Cut-off: 0.1%* 0.6% 0.8% 

 
  Manual analysis (gold standard) 

 
  

Negative 
(n = 15) 

Positive 
(n = 15) 

Negative 
(n = 15) 

Positive 
(n = 15) 

Negative 
(n = 33) 

Positive 
(n = 17) 

R
F

C
 

Negative 
TN FN TN FN TN FN 

2 0 15 3 29 3 

Positive 
FP TP FP TP FP TP 

13 15 0 12 4 14 

  
SEN FPR FNR SPC SEN FPR FNR SPC SEN FPR FNR SPC 

  
100% 87% 0% 13% 80% 0% 20% 100% 82% 12% 18% 88% 

  
ACC 57% ACC 90% ACC 86% 

* The 0.1% cut-off was only showed for the retrospective test cohort as a similar result (high FPR) was achieved for the 
prospective patients. 
ACC, accuracy; FN, false negative; FNR, false negative rate; FPR, false positive rate; FP, false positive; n, number; RFC, 
random forest classifier; SEN, sensitivity; SPC, specificity; TN, true negative; TP, true positive 
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Figure 1. Performance evaluation of an ML approach for identification and quantitation of 
AML MRD by MFC. (A) A summary of the data collection procedure, schematic nested-cross 
validation with inner and outer folds, and the composition of the training and the two test sets. 
(B) An exploratory analysis of the training dataset before the training step via a down-sampled 
UMAP (one million cells) constructed with 9 fluorescence and 2 main scatter parameters, 
demonstrating all cellular subsets present in bone marrow (left). A simplified hematopoietic 
maturation is inferable in myeloid lineages indicative of dataset’s biological explainability. 
Unlike other cell populations demonstrating uniform colors, “Residual Leukemic Cells” (dark 
blue) exhibit heterogeneous immunophenotypes due to their similarity with/differentiation 
toward different cell populations including common myeloid progenitors, neutrophilic 
precursors, and monocytic precursors. Furthermore, analysis of batch distribution (acquisition 
date) excludes the possibility of batch effects in the dataset (right). The UMAP was created using 
the umap-learn package with number of components = 2, number of neighbors = 15, and 
minimum distance = 0.1. (C) The comparison between phenotypes defined by manual analysis 
and predicted by RFC model. Each row represents one MRD-positive patient from the 
retrospective test cohort. Normal cells and MRD identified by manual analysis are shown in grey 
and maroon, respectively. Briefly, the immunophenotype defined for the first case included a 
heterogeneous CD34, decreased CD13, increased CD33 and aberrant CD56 expressions. The 
immunophenotype in the second case was defined as increased CD45, increased SSC, and bright 
CD34 expressions. Black contour lines and dots represent the RFC prediction. (D) A heatmap 
representing the explainability matrix for the predicted populations using the initially trained 
model for patient shown in Figure 1C upper row as an example. Darker color depicts higher 
importance. Feature importance can be in both directions e.g., CD19-positivity for “Mature B-
Cells” or CD45-negativity for “Erythroid Cells”, as well as ranges of signal values. (E) The 
Spearman’s correlation analysis of MRD percentage between manual analysis and RFC for all 
cases, as well as only remission cases of retrospective and prospective test cohorts (P < 0.0001). 
Filled circles illustrate the remission cases. The light line shows perfect correlation. (F) ROC 
curve of different MRD cut-offs in retrospective (n = 30) and prospective (n = 50) test cohorts. 
The 0.6% and 0.8% cut-offs (black circles) showed the highest AUC for retrospective and 
prospective test cohorts, respectively. Statistical analyses were performed with SciPy and scikit-
learn packages. Figures were created with seaborn and Matplotlib packages in python, 
Infinicyt™, and FlowJo™ (BD Life Sciences). AML, acute myeloid leukemia; AUC, area under 
the curve; CD, cluster of differentiation; csv, comma-separated values file; cyt, Infinicyt 
analyzed file; fcs, flow cytometry standard file; MFC, multiparameter flow cytometry; ML, 
machine learning; MRD, measurable residual disease; Neg, negative; Pos, positive; RFC, 
random forest classifier; ROC, receiver operating characteristics; SSC, side scatter; UMAP, 
uniform manifold approximation and projection. 





Table S1. Patient cohorts’ response categories. 

 Number (%) %MRD, Median (Range) 

Training/validation cohort 132   

Remission* 125 (94.7) 0** (0 - 2.6) 

Relapse/Refractory 7 (5.3) 8.1 (5.2 - 26.1) 

Retrospective test cohort 30   

Remission 22 (73.3) 0 (0 - 4.5) 

Relapse/Refractory 8 (26.7) 12.8 (5.9 - 84.6) 

Prospective test cohort 50   

Remission 42 (84.0) 0 (0 - 4.5) 

Relapse/Refractory 8 (16.0) 21.4 (5.2 - 72.2) 

*Defined morphologically as blasts < 5%. 

**MRD percentages of “undetectable” patients (patients with no MRD, 
considering the assay’s lower limit of detection) were designated as 0. 

MRD, measurable residual disease 

Figure S1. Populations gated and annotated by manual analysis with InfinicytTM 

software. All normal bone marrow populations including “Normal Myeloid Precursors” (last row, 

blue) and if present, “Residual Leukemic Cells” (last row, red) were gated and assigned based on 

their immunophenotypic profile. The designated populations were “Residual Leukemic Cells” 

(i.e., MRD), “Normal Myeloid Precursors”, “Erythroid Cells”, “Erythroid Precursors”, “B-Cell 

Precursors”, “Mature B-Cells”, “Plasma Cells”, “T- and NK-Cells”, “Promyelocytes”, 

“Myelocytes, Metamyelocytes and Band Cells”, “Segmented Neutrophils”, “Eosinophils”, 

“Mature Monocytes”, “Monoblasts and Promonocytes”, “Plasmacytoid Dendritic Cells”, 

“Basophils”, and “Mast Cells”. CD, cluster of differentiation; MRD, measurable residual disease; 

NK, natural killer; SSC, side scatter. 

Figure S2. Detailed analyses of model performances. A) Classification report of test sets 

for 5-fold nested cross-validation comparing the performance of the three models tested; i.e., SVM, 

LGBM, and RFC. Each dot represents one fold. The boxplot demonstrates the median, quartiles, 

and spread of the precision, recall, and F1-score of the models. B) Batch effect analysis of the test 

cohorts (total n = 80). PCA used median signal intensities of all fluorescence and scatter parameters 

for 4 bone marrow populations including “Mature B Cells”, “Mature Monocytes”, “Normal 

Myeloid Precursors”, and “T and NK Cells”. Each dot represents one patient. The difference 

between populations is not driven by batch number (i.e., technical confounders). C) Classification 

report of 10 test cases comparing RFC prediction with manual analysis. Five cases from the 

retrospective test cohort (4 MRD-positive and 1 MRD-negative) and 5 from the prospective test 

cohort (3 MRD-positive and 2 MRD-negative) were randomly selected to report the classification 

performance. The boxplot demonstrates the median, quartiles, and spread of the recall, F1-score, 

and precision of the model for all predicted classes. D) The Spearman’s correlation analysis of all 

populations between manual analysis and RFC in all cases in retrospective (n = 30) and prospective 

(n = 50) test cohorts. The light line shows perfect correlation. The model demonstrated good 

correlation with manual analysis in most of the classes in both retrospective and prospective test 

cohorts including “All Myeloid Precursors” (normal and abnormal), “T- and NK-Cells”, and 

“Erythroid Cells”. For the simplicity of analysis, the sum of “Myelocytes, Metamyelocytes and 

Band Cells”, “Segmented Neutrophils”, and “Eosinophils”, and the sum of “Mature Monocytes” 



and “Monoblasts and Promonocytes” were designated as “Neutrophil Series and Eosinophils” and 

“Monocyte Series”, respectively. Performance metrics including accuracy, precision, recall, and 

F1-score were calculated with scikit-learn package. LGBM, light gradient-boosting machine; 

MRD, measurable residual disease; NK, natural killer; PC, principal component; PCA, principal 

component analysis; RFC, random forest classifier; SVM, support vector machine. 






