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Abstract 

The heterogeneity of the hematopoietic system was largely veiled by traditional bulk 

sequencing methods, which measure the averaged signals from mixed cellular 

populations. In contrast, single-cell sequencing has enabled the direct measurement of 

individual signals from each cell, significantly enhancing our ability to unveil such 

heterogeneity. Building on these advances, numerous single-cell multi-omics techniques 

have been developed into high-throughput, routinely accessible platforms, delineating 

the precise relationships among the different layers of the central dogma in molecular 

biology. These technologies have uncovered the intricate landscape of genetic clonality 

and transcriptional heterogeneity in both normal and malignant hematopoietic systems, 

highlighting their roles in differentiation, disease progression, and therapy resistance. 

This review aims to provide a brief overview of the principles of single-cell technologies, 

their historical development, and a subset of ever-expanding multi-omics tools, 

emphasizing the specific research questions that inspired their creation. Amidst the 

evolving landscape of single-cell multi-omics technologies, our main objective is to 

guide investigators in selecting the most suitable platforms for their research needs. 
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Introduction 

The hematopoietic system is a complex ecosystem comprising diverse cellular 

populations, each defined by different lineages, functions, and activation states. While 

cost-effective, the conventional approach of analyzing bulk blood specimens obscures 

detailed examination of heterogeneous cellular states. As distinct cellular populations 

are sequenced together, bulk sequencing yields an average mutant allele frequency or 

gene expression profile combined for the heterogeneous populations, masking the 

precise lineage or clonal relationship between the cells. In contrast, single-cell 

sequencing (SCS) has enabled direct assessment of cell-to-cell variabilities, 

reconstruction of evolutionary relationships, and identification of rare populations.  

Historically, the hematopoietic system has been at the forefront of technological 

advancements due to the accessibility of blood samples and the facility to analyze cells 

that naturally exist in dissociated states. Over the past decade, SCS has continued to 

refine our understanding of the hematopoietic system, challenging the models of 

hematopoiesis 1 and characterizing unconventional leukemic stem cells (LSCs)2 

conferring resistance against targeted therapies, just to iterate a few. 

This review aims to summarize the principles of SCS while outlining recent 

advancements in SCS. As the field rapidly evolves and new technologies continue to 

emerge, investigators are left with an almost overwhelming abundance of choices. The 

primary focus of this review is to present a subset of the many available multi-omics 

platforms, particularly in the context of studying tumor heterogeneity and clonal 
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evolution, while highlighting the types of research questions they are designed to 

address. 

 

Overview of single-cell technologies 

 

Single-cell isolation and library preparation techniques 

The first crucial step in SCS is the isolation of individual cells. Initially, single cells 

were manually picked under a microscope 3, which was laborious and inherently low in 

throughput. Shortly after, the procedure was scaled up and partially automated using 

fluorescence-activated cell sorting (FACS) 4, 5, which was used to place each cell onto 

each well of the 96-well plates before researchers carried out library preparation.  

The advancement of SCS gained considerable momentum with the introduction 

of microfluidics, which allowed a large number of cells to be automatically isolated and 

prepared for libraries in parallel. The earlier plate-based microfluidics, such as 

Fluidigm’s C1 system 6, enabled the processing of hundreds of cells per sample. Later, 

the advent of droplet-based microfluidics 7, 8 scaled up the throughput to thousands of 

cells per sample, enhancing the ability to detect rare populations in the sample. Perhaps 

the most well-known droplet-based platform, the Chromium from 10X Genomics 9, 

quickly gained popularity over existing droplet-based methods 7, 8 by significantly 

improving cell capture rates. 

A significant drawback of microfluidics is their propensity to isolate multiple cells 

together, known as multiplets. To circumvent this, some single-cell studies adopted a 

high-throughput technique called combinatorial indexing 10, which reduces the likelihood 
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of any two cells receiving the same barcode without necessitating each cell’s physical 

isolation. Others sought to capture single cells in scalable, size-adjusted nanowells 11, 

minimizing the probability of isolating more than one cell per well. Nevertheless, a 

comparative study 12 found no significant difference in multiple rates between these 

methods and microfluidics, suggesting that factors like target sensitivity or ease of use 

should be prioritized when choosing high-throughput techniques. 

In SCS, each fragmented genetic molecule is labeled with a cell-specific barcode 

and a unique molecular identifier (UMI) 13. This dual tagging enables the tracing of the 

molecule's origin back to its respective single cell and the quantifying of the pre-

amplification molecule abundance. The advent of UMI was detrimental to the refinement 

of SCS, as it significantly mitigated amplification errors by allowing the discernment of 

amplification-derived artifacts. Mammalian cells only contain picograms of DNA and 

RNA, far short of the nanograms of input materials required for sequencing. As a result, 

SCS often requires aggressive amplification, which serves as a major source of error.  

To enhance efficiency and reduce costs, each molecule is now also tagged with a 

sample-specific barcode, allowing the pooling of multiple samples for simultaneous 

sequencing. Tools like cell hashing 14 directly assign sample-specific barcodes to 

molecules, while computational methods like demuxlet 15 utilize natural markers such as 

single-nucleotide variants (SNVs) to distinguish samples based on donor-specific 

mutational profiles. Despite these advances, challenges like cross-contamination persist, 

underscoring the need for further technical and bioinformatic improvements in sample 

multiplexing techniques. 
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Single-cell RNA sequencing 

The human transcriptome, comprising approximately 20,000 genes, represents 

only 2% of the entire genome. This has uniquely positioned single-cell RNA sequencing 

(scRNA-seq) as a leading single-cell technology and a powerful, unbiased tool for 

capturing a cell’s phenotypic state. 

The inaugural single-cell study in 2009 3 (Figure 1) conducted whole 

transcriptomic sequencing (WTS) on just a single mouse blastomere. Since then, a wide 

spectrum of scRNA-seq protocols have been developed to meet different needs. Given 

that the average mRNA transcripts are sized several kilobases, reading only 100-400 

base pairs at either the 3’ or 5’ end of mRNA provides a cost-effective and high-

throughput approach. However, this approach cannot profile RNA isoforms or most 

SNVs, which require full-length sequencing. Smart-seq2 16, a pioneer of modern full-

length sequencing, has been widely used in applications that require highly sensitive 

variant analysis but have lower demands on the throughput. More recently, it was 

updated as Smart-seq3 17, incorporating 5’ UMIs to enhance the accuracy of transcript 

quantification. Extending from these capabilities, recent advancements in scRNA-seq 

have made it compatible with long-read sequencing, such as Nanopore 18, which 

circumvents the error-prone processes of fragmentation and assembly. Although the 

technology has facilitated the study of larger structural variants in scRNA-seq, its 

current high error rates warrant careful application. The per-cell cost increases 

progressively from 3’/5’ end-based sequencing to full-length sequencing and further to 

long-read sequencing. 5' end sequencing is slightly more expensive than 3' end 

sequencing but offers moderately improved mutation detection. In summary, cost 
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differences have created a tradeoff between cellular throughput and transcript coverage 

in scRNA-seq (Figure 2a), leading to the development of various platforms (Table 1). 

One of the current limitations of scRNA-seq includes transcriptomic dropouts. 

Most mRNAs are expressed in only a few copies per cell, and the expression of mRNA 

at any given state varies significantly depending on the cell physiology and RNA 

stochasticity. This makes it difficult to discern whether the observed absence of a 

transcript is due to technical error or genuine biological variability. However, newer 

algorithms, as well as the construction of reference-level transcriptomic cell atlases, are 

gradually addressing these challenges.  

 

Single-cell DNA sequencing 

Single-cell DNA sequencing (scDNA-seq) technologies present a unique 

opportunity to analyze the clonality of individual cells and the order in which mutations 

arise, both of which have significant implications for clinical outcomes 19. However, the 

development of scDNA-seq was relatively delayed compared to scRNA-seq (Figure 1), 

primarily due to the limited copy number of DNA in a cell (only two versus multiple 

copies of mRNA), as well as their larger size and complexity (Figure 2). These 

attributes of the genome present higher risks of misalignment, allele dropout (ADO), and 

artifact mutations, all of which can easily complicate scDNA-seq analysis. 

Compared to the transcriptome, the human genome spans several gigabases. 

Subsequently, whole-genome amplification (WGA) remains a bottleneck in scDNA-seq, 

making single-cell whole-genome sequencing (WGS) costly, error-prone, and 

challenging. To reduce the WGA bottleneck, specific methods have emerged for 
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different intentions of analysis. In general, polymerase chain reaction (PCR)-based 

methods, such as Degenerate Oligonucleotide-Primed PCR (DOP-PCR) 20 or Multiple 

Annealing and Looping-Based Amplification Cycles (MALBAC) 21, are considered more 

suitable for analyzing larger changes in the chromosome, such as copy number 

alterations (CNA). Meanwhile, isothermal methods utilizing high-fidelity phi29 

polymerases, such as Multiple Displacement Amplification (MDA) 22 or Primary 

Template-directed Amplification (PTA) 23, are deemed more suitable for precisely 

analyzing smaller changes such as SNVs. The range of options available for WGA 

stands in contrast to those commonly employed for whole-transcriptome amplification 

(WTA) in scRNA-seq, which are simply narrowed down to either in vitro transcription 24 

or PCR. 

The first scDNA-seq study in 2011 performed whole-genome sequencing (WGS) 

on a hundred single nuclei from human breast cancer 5 (Figure 1). Using DOP-PCR, 

the study focused on profiling CNAs to reconstruct the clonal history of breast cancer at 

the chromosomal level. Subsequent studies demonstrated the feasibility of single-cell 

whole-exome sequencing (WES) in human essential thrombocytopenia 25 and renal cell 

carcinoma 26. Using MDA to profile SNVs, these studies aimed to characterize the clonal 

makeup of these diseases at the single nucleotide level.  

To minimize technical artifacts from in vitro WGA, some researchers sought to 

utilize amplification methods naturally employed by cells. One group 27 performed ex 

vivo WGA via a method known as single-cell cloning, deriving colonies from individual 

hematopoietic stem and progenitor cells (HSPC) that are capable of forming colonies. 

This approach has found numerous applications in studies investigating the clonal 
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architecture of HSPCs, such as in healthy individuals 28, 29 and patients with 

myeloproliferative neoplasms 30. Another group captured nuclei undergoing the G2/M 

phase of the cell cycle, leveraging their duplicated genomic material 31. 

The large size of the genome presents a distinct tradeoff between genome 

coverage and throughput in scDNA-seq (Figure 2b). Targeted scDNA-seq 32, 33 only 

requires a small region of DNA amplification but provides an incomplete picture of the 

genome, trading coverage for cost and efficiency. To give a practical example within 

commercial programs, Mission Bio’s Tapestri platform uses targeted scDNA-seq to 32 

profile thousands of cells at the expense of sequencing only tens or hundreds of genes. 

In contrast, Bioskryb’s ResolveDNA platform 34, which relies on the PTA technique for 

WGA, provides whole-genome or whole-exome analyses for sequencing just a few 

hundred cells. At the single-cell level, WES is done by enriching the exome region after 

performing WGA (Figure 2b), facing the same bottleneck as WGS. 

One of the core applications of scDNA-seq is to trace the evolutionary trajectory 

through examination of the mutation co-occurrence. In this sense, targeted scDNA-seq 

offers an efficient means for clonal analysis by focusing on common driver mutations. 

However, due to the limited number of mutations profiled for each cell, the resolution of 

clonality is inherently limited. Albeit costly, whole-genome analysis is necessary to 

obtain a complete and unbiased view of the genome. 

 

Single-cell mitochondrial sequencing  

To address the limitations of high cost, error rates, and lack of scalability in 

single-cell WGS, recent studies have also shown the potential of analyzing clonality 
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through profiling the mitochondrial DNA (mtDNA). A landmark study 35 has reported that 

mtDNA has proven to be a reliable source for lineage tracing due to its smaller size 

(16.6 kilobases) and higher copy number per cell. Most importantly, as the mitochondrial 

genotype is already, and often inadvertently, captured during routine scRNA-seq or 

single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq)36 

experiments, this approach is spearheading advancements in single-cell lineage tracing 

techniques. However, it is currently unknown whether the clonalities inferred from 

mtDNA match those inferred from genomic DNA. 

 

Bioinformatics 

With the increasing standardization of experimental workflows, data analysis now 

constitutes the majority of the effort in single-cell analysis. Repurposing many tools 

used for processing bulk sequencing data, the upstream preprocessing, such as 

trimming, alignment, and variant calling, has become relatively well-defined and 

automated. For instance, many commercial SCS platforms provide cloud-based 

interfaces that allow users to simply upload FASTQ files and run all the steps of 

preprocessing. Interestingly, a study 37 has even demonstrated that the choice of 

scRNA-seq preprocessing pipelines had minimal impact on downstream clustering 

results once effective normalization and clustering methods are applied. 

In contrast, downstream analysis requires advanced programming skills and 

domain knowledge, presenting a hurdle that often necessitates hiring a trained 

bioinformatician to manage the analysis. The analytic workflow of scRNA-seq has been 

well-established, supported by publications such as ‘Best Practices of Single-Cell 
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Analysis’ 38 and renowned tools such as Seurat 39 or SCANPY 40. Conversely, scDNA-

seq has yet to achieve a comparable level of establishment, although new tools like 

Mission Bio’s Mosaic or Bioskryb’s BaseJumper are beginning to make the analysis 

more simple and accessible. 

 

Multimodal single-cell technologies 

The maturation of unimodal single-cell technologies soon motivated researchers 

to overlay different modalities to understand relationships among various components of 

the cell, such as the genome, epigenome, transcriptome, or proteome (Table 1 and 

Figure 3). Some of these technologies are bona fide multi-omics, directly measuring 

multiple elements from the same cell, while others attempt to infer unmeasured 

modalities based on a measured modality. 

 

Integrating genomics with transcriptomics 

 Although scRNA-seq effectively resolves granular cell types within a tumor 

sample, it poses challenges in precisely demarcating leukemic cells from normal cells in 

the sample. In this sense, concurrent examination of a cell’s mutational status enables 

the assessment of malignancy in a sample of transcriptionally heterogeneous cells. This 

approach offers a unique advantage in discovering the underlying transcriptional 

pathways that may drive the predominance of certain clonal populations and elucidating 

the impact of mutations in the alteration of transcriptional activities. 

Several platforms have enabled direct measurement of DNA and RNA from the 

same cell. For instance, ResolveOME 34, an extension of the WGS-based ResolveDNA 
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platform, combines WGS with full-length WTS to allow for unbiased screening of a cell’s 

genome and transcriptome. To focus on only a few genes of interest instead, TARGET-

seq 41 could be used, as demonstrated in a recent study 42 that investigated two 

representative clonal hematopoiesis mutations in DNMT3A and TET2. Using TARGET-

seq, the study demonstrated that HSCs harboring these mutations gain a fitness 

advantage over wild-type HSCs by attenuating inflammation-associated transcriptional 

programs, which enhances the survival of mutant HSCs in the inflammatory tumor 

environment. 

However, direct measurement of DNA remains expensive and technically 

challenging, prompting the development of various alternatives. Inferring CNAs from 

scRNA-seq data is relatively straightforward and can be achieved using simple 

estimation 43 or advanced computational algorithms 44. On the contrary, detecting 

oncogenic SNVs and indels proves to be more challenging. Truncating or non-sense 

mutations are less likely to be transcribed, and 3’ or 5’ biased scRNA-seq may not 

efficiently cover the mutated loci. Nonetheless, several groups have successfully 

inferred specific driver mutations from scRNA-seq reads by experimentally modifying 

the scRNA-seq protocols, such as spiking in mutant-specific primers 45, 46, circularizing 

cDNA 46, or utilizing long-read sequencing 46, 47. A notable multi-omic platform adopting 

this approach is the Genotyping of Transcriptomes (GoT) 46, which analyzed patients 

with essential thrombocytopenia and provided in situ evidence that the transcriptional 

outcome of CALR mutations may confer a clonal advantage specifically in the 

compartment of megakaryocyte progenitors. 
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Integrating genomics with epigenomics 

Following the development of scRNA-seq and scDNA-seq, newer technologies 

were rapidly developed to study epigenomic processes at the single-cell level (Figure 1). 

For instance, scATAC-seq profiles open chromatin regions of the DNA, and single-cell 

reduced-representation bisulfite sequencing (scRRBS) 48 analyzes DNA methylation 

patterns in the CpG-rich regions. These technologies were quickly integrated with 

genomic analysis to understand how alterations in gene regulation are affected by 

mutations at the DNA level. 

Two multi-omic protocols have enabled high-throughput analysis of a few target 

genes with chromatin accessibility by adding specific DNA primers onto scATAC-seq 49, 

50 protocols. For example, the Genotyping of Targeted loci with single-cell Chromatin 

Accessibility (GoT-ChA) 50, an extension of a droplet-based scATAC-seq protocol, was 

applied to study patients with myeloproliferative neoplasm. Focusing on JAK2 V617F 

mutations, the study revealed epigenetic rewiring specifically in HSCs and 

megakaryocyte progenitors, marked by increased chromatin accessibility in 

inflammation-related genes. A notable aspect of GoT-ChA is that, beyond the two 

directly sequenced modalities, it sought computational integration with other multi-omic 

tools, such as DOGMA-seq 51, through the common grounds of ATAC-seq modality. 

Hence, GoT-ChA was able to infer modalities such as mtDNA, immunophenotype, and 

gene expression, which were not directly sequenced by the platform itself. Such an 

imputation approach has become increasingly popular to complement missing 

information and cross-validate the findings that have been made based on measured 
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modalities, overcoming current limitations in multi-omic capabilities that can directly 

sequence only two to three modalities.  

Currently, multi-omics technologies that integrate DNA mutations and methylation 

status are rooted in joint methylome and transcriptomic analysis. Earlier methods like 

the single-cell triple omics sequencing technique (scTrio-seq)52 enabled genome, 

methylome, and transcriptome analysis by combining scRRBS with scRNA-seq and 

inferring CNAs from their reads. More recent methods attempted to integrate scRRBS 

with Smart-seq2 (Smart-RRBS) 53 and, further, with genotyping 54 to profile DNA 

methylome, transcriptome, and SNVs simultaneously. This technique was applied in 

chronic lymphocytic leukemia (CLL) study 54 that aimed to reconstruct the evolutionary 

history of tumor cells based on “epimutations”, the heritable changes in DNA 

methylation. The study initially constructed the CLL lineage tree based on the scRRBS 

data and subsequently integrated genotyping data to validate and refine the lineage tree. 

 

Integrating genomics with proteomics 

 Prior to the development of scRNA-seq, cell types were traditionally identified 

based on surface proteins or immunophenotypes. Integrating single-cell 

immunophenotypes offers several advantages over single-cell transcriptomics for 

characterizing a cell's phenotypic state. Not only is immunophenotype the clinically 

established gold standard for cell type identification, but it also exhibits greater stability 

compared to RNA species, holding greater potential for applications like in vitro 

diagnostic tools. Moreover, certain immunophenotypes serve as canonical markers for 
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leukemic cells, enabling their use as surrogates of malignancy to demarcate leukemic 

cells within a sample.  

To remain compatible with high-throughput droplet-based microfluidic platforms, 

standard flow cytometry has been modified by conjugating protein-binding antibodies 

with oligonucleotides instead of fluorophores 55. This strategy allows protein abundance 

to be sequenced and quantified just like DNA. Another benefit of using oligonucleotides 

is their ability to generate nearly infinite combinations of barcodes. In practice, this 

allows the unique identification of hundreds of surface proteins, far exceeding the 

capabilities of conventional mass or flow cytometry, which can typically trace only a few 

dozen. However, antibody-oligonucleotide tags are not fully optimized yet, with efforts to 

refine antibody titration 56 only recently underway. 

Building on targeted scDNA-seq platform like Tapestri, DNA-Antibody sequencing 

(DAb-seq) 32 integrates the analysis of surface proteins and target genes to elucidate 

the relationship between cellular phenotypes and driver mutations. In acute myeloid 

leukemia (AML) research, DAb-seq has been employed to map the mutational 

landscape across diverse AML cell types 57, 58, outline genotype-phenotype evolution in 

response to targeted therapies 59, and distinguish non-malignant clonal hematopoiesis 

mutations from common driver mutations by identifying the absence of leukemia-

associated immunophenotypes within the same cell 60. 

 

Integrating transcriptomics with proteomics 

Several multi-omics platforms, including the widely-used Cellular Indexing of 

Transcriptomes and Epitopes sequencing (CITE-seq) 61, have been developed to 
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measure mRNA expression and surface protein abundance from the same cell. 

Integrating scRNA-seq with immunophenotype data improves cell type identification by 

providing a more comprehensive view of a cell’s phenotypic state. For instance, a 

recent study 56 using CITE-seq produced a high-resolution atlas of human 

hematopoietic progenitors, identifying novel surface markers to isolate transitional cell 

populations. These isolated progenitors exhibited restricted clonal outputs in 

experimental data, supporting a discrete stem and progenitor cell state model 1 rather 

than the continuous hematopoiesis model proposed with the advent of scRNA-seq.  

Until recently, multi-omic techniques linking transcriptomics with proteomics were 

primarily limited to surface protein analysis. However, emerging techniques like Single-

cell Protein And RNA Co-profiling (SPARC) 62 are now enabling the analysis of 

intracellular proteins as well. 

 

Integrating mitochondrial genomics with transcriptomics or epigenomics 

Clonal relationships can be inferred by enriching mitochondrial RNAs that are 

already captured in low amounts by standard scRNA-seq platforms. Techniques such as 

Mitochondrial Alteration Enrichment from Single-cell Transcriptomes to Establish 

Relatedness (MAESTER) 63 have demonstrated the feasibility of this approach. Similarly, 

integrating scATAC-seq with mitochondrial genotyping has proven effective for inferring 

clonal structures. For instance, the single-cell Regulatory Multimaps with Deep 

Mitochondrial Mutation Profiling (ReDeeM) 64 technique uses deep sequencing to profile 

mtDNA while simultaneously performing scRNA-seq and scATAC-seq, easily integrating 

the clonal analysis into the investigation of transcriptomic and regulatory landscapes. 
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Summary 

The past decade has witnessed a significant expansion in the capabilities of 

single-cell analytics, greatly enhancing our understanding of the biology underlying 

hematopoiesis and hematologic malignancies. Advances in single-cell multi-omics 

technologies provided unprecedented insights into cellular heterogeneity, lineage 

differentiation, and molecular mechanisms driving the disease progression. Such rapid 

technological progress, coupled with the decreasing cost of sequencing, is poised to 

further improve cellular throughput and accessibility of these technologies. 

Despite the current predominance of single-cell tools in research settings, there 

is a growing potential for their application in clinical practice. For instance, platforms like 

scDNA-seq and its multi-omic adaptations could be used to identify minimal residual 

disease, monitor clonal evolution during therapy, and tailor personalized treatment 

strategies in leukemia patients 19, 65. However, translating these tools to clinical use will 

require rigorous clinical validation and evidence that they enhance clinical decision-

making. 

The remarkable advancements observed over the past decade suggest that 

integrating single-cell technologies into clinical workflows is not far off. Continued 

investment and research in single-cell analytics are essential to making these tools 

accessible and routine in both research and clinical settings. 
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Table 1. Summary of single-cell sequencing technologies introduced in this review. 
 

 

Modality Name of Technology Base study Scope of targets in the study 

Transcriptome 

Chromium (10X) Zheng et al. (2017) Whole-transcriptome (3' or 5' end) 

Smart-seq2 Picelli et al. (2013) Whole-transcriptome (full-length) 

Smart-seq3 Hagemann-Jensen et al. (2020) Whole-transcriptome (full-length) 

Nanopore Byrne et al. (2017) Whole-transcriptome (long-read) 

Genome 
Tapestri (Mission Bio) Pellegrino et al. (2018) 63 genomic loci (23 genes) 

ResolveDNA (Bioskryb) Marks et al. (2023) Whole-genome 

Genome+ 
Transcriptome 

TARGET-seq  Rodriguez-Meira (2019) Whole-transcriptome, 12 genomic loci 

GoT  Nam et al. (2019) Whole-transcriptome, 45 genes 

ResolveOME  Marks et al. (2023) Whole-transcriptome, whole-genome 
Genome+ 
Chromatin 

Accessibility 
Got-ChA  Izzo et al. (2024) Open chromatin regions, 5 genomic loci 

Genome+ 
Methylome 

scTrio-seq  Hou et al. (2016) Whole-transcriptome, CpG-rich DNA methylome, 
CNAs1 

Smart-RRBS + genotyping Gaiti et al. (2019) Whole-transcriptome, CpG-rich DNA methylome, CNAs, 
SNVs2 

Genome+ 

Proteome 
DAb-seq  Demaree et al. (2021) 49 genomic loci (19 genes), 23 surface proteins 

Transcriptome+ 

Proteome 

CITE-Seq  Stockeius et al. (2017) Whole-transcriptome, 17 surface proteins 

SPARC Reimegård et al. (2021) Whole-transcriptome, 89 intracellular proteins 
Mitochondrial 

Genome+ 
Transcriptome 

MAESTER Miller et al. (2022) Whole-transcriptome, mtRNA 

ReDeeM Weng et al. (2024) Whole-transcriptome, open chromatin regions, mtDNA 

 

                                                       
1
 Copy number alterations 
2
 Single nucleotide variants 
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Figure Legends 
 
Figure 1. The milestones of single-cell sequencing platforms in the past decade. 
Color coding is as follows: green for single-cell RNA sequencing, orange for single-cell 
DNA sequencing, purple for single-cell epigenomics sequencing, red for single-cell 
multi-omics sequencing, pink for single-cell isolation techniques, and turquoise for 
whole-genome amplification methods. 
 
Figure 2. The tradeoff between coverage and throughput due to the high 
sequencing cost of single-cell sequencing. (a) The tradeoff between cellular 
throughput and transcript coverage in scRNAseq requires a choice between high-
throughput sequencing with partial transcript coverage on thousands of cells and low-
throughput sequencing with full transcript coverage on tens or hundreds of cells. (b) The 
tradeoff between cellular throughput and genome coverage in scDNA-seq requires a 
choice between narrow, targeted sequencing on thousands of cells and broad, genome-
wide sequencing on tens or hundreds of cells. 
 

Figure 3. Summary of capabilities across multi-modal single-cell platforms. 
 

 

 








