Depletion of the RNA binding protein QKI and circular RNA dysregulation in T-cell acute lymphoblastic leukemia

Authors

Alessia Buratin,¹ Bruno Palhais,²-⁴ Enrico Gaffo,¹ Juliette Roels,⁴ Julie Morscio,⁴ Jolien Van Laere,⁴ Silvia Orsi,¹.⁵ Geertruij te Kronnie,¹ Pieter Van Vlierberghe,⁴ Panagiotis Ntziachristos²-⁴ and Stefania Bortoluzzi¹

¹Department of Molecular Medicine, University of Padova, Padova, Italy; ²Leukemia Therapy Resistance Unit, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; ³Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium; ⁴Cancer Research Institute Ghent (CRIG), Ghent, Belgium and ⁵Department of Biology, University of Padova, Padova, Italy

Correspondence:

S. BORTOLUZZI - stefania.bortoluzzi@unipd.it https://doi.org/10.3324/haematol.2024.285971

Received: May 30, 2024.

Accepted: November 25, 2024.

Early view: December 5, 2024.

©2025 Ferrata Storti Foundation

Published under a CC BY-NC license

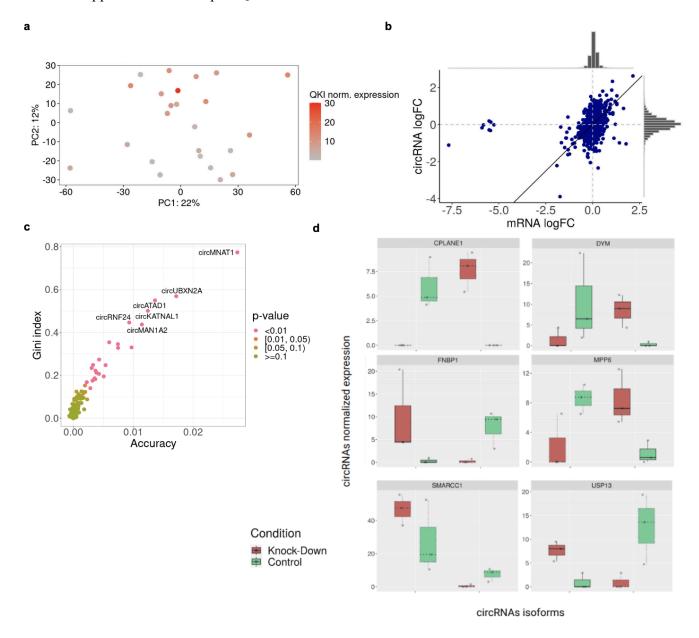
Depletion of the RNA binding protein QKI shapes circular RNA dysregulation in T-cell acute lymphoblastic leukemia

Alessia Buratin¹, Bruno Palhais^{2,3,4}, Enrico Gaffo¹, Juliette Roels⁴, Julie Morscio⁴, Jolien Van Laere⁴, Silvia Orsi^{1,5}, Geertruij te Kronnie¹, Pieter Van Vlierberghe⁴, Panagiotis Ntziachristos^{2,3,4} and Stefania Bortoluzzi^{1*}

¹ Department of Molecular Medicine, University of Padova, Padova, Italy

² Leukemia Therapy Resistance Unit, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.

³ Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium.


⁴Cancer Research Institute Ghent (CRIG), Ghent, Belgium

⁵ Department of Biology, University of Padova, Padova, Italy

^{*}Correspondence: Prof. Stefania Bortoluzzi, Department of Molecular Medicine, University of Padova, via G. Colombo 3, 35131- Padova, Italy. Email: stefania.bortoluzzi@unipd.it

Supplementary Results

Figure S1. a. Unsupervised principal component analysis of T-ALL patients (n=25) according to expression profiles of the circRNA linear counterpart (overlapping mRNAs in circRNA-expressing genes; Samples are colored according to a gradient of *QKI* expression levels); b. Scatter plot of expression log Fold Change of circRNAs and their linear counterpart when comparing QKI_low with QKI_normal T-ALL; c) CircRNAs importance plot in the Random Forest classification model of QKI_low and QKI_normal T-ALL samples (Gini index and Accuracy measure were used to rank the most discriminating circRNAs; Dots are colored according to Adj. p-value significance; Names are reported for the top 6 circRNAs); d) Boxplot of circRNA isoforms expressed from the same host gene and with opposite behavior upon QKI KD in Jurkat cells.

Table S1. Table of 3 376 circRNAs used to compare T-ALL patients with low QKI and with normal expression level (QKI_low vs QKI_normal). For each circRNAs are reported the host gene info; absolute (.EXP) and relative (.CLP) average expression; statistical test and p-value of the QKI-subgroups comparison for absolute and relative expression, respectively.

(see file .xls)

Table S2. QKI response elements coordinates from PAR-CLIP experiment or predicted by using regular expression within 1000 nt upstream or downstream of the circRNAs backsplice sites detected in QKI Knock-Down experiment in Jurkat cells. The distance from the backsplice junction and the position (Upstream/Downstream) relative to the backsplice are also reported. For predicted QRE the string is reported in the last column.

(see file .xls)