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Main 

Clonal hematopoiesis of indeterminate potential (CHIP) occurs when a hematopoietic 

stem cell acquires a somatic driver mutation in a leukemia-associated gene, with a variant allele 

fraction (VAF) exceeding 2% in peripheral blood.1 Higher VAF is associated with increased 

morbidity and mortality risk.2–5 Identifying factors influencing clonal expansion rate is crucial 

for risk stratification in CHIP patients. Recent cost-effective targeted assays have enabled serial 

sequencing and longitudinal profiling of CHIP dynamics.6 We present the largest longitudinal 

analysis of CHIP mutational dynamics to-date, examining 3,000 individuals from the Vanderbilt 

BioVU biobank. Our findings reveal that CHIP growth rates vary significantly by driver gene 

and are influenced by germline variants and medication exposures. Additionally, we demonstrate 

that monitoring blood counts may be more informative for risk stratification than frequent 

resequencing in CHIP patients. 

We performed targeted, error-corrected sequencing on serial blood samples from 3,000 

individuals in the Vanderbilt BioVU biobank, using custom-designed probes for 22 CHIP-

associated genes (Supplementary Table 1; Supplementary Figure 1). Vanderbilt University 

Medical Center’s Institutional Review Board oversees BioVU and approved this project (IRB 

#201783). Unique molecular identifiers (UMI) were used for error correction, excluding 

mutations detected from a single UMI. The mean coverage depth was 1725x after de-duplication. 

CHIP mutations were called for variants with ≥100x total read depth, ≥3 variant allele reads, and 

>2% VAF in at least one blood draw. We identified 893 CHIP mutations in 711 individuals 

(Figure 1A). The mean age of the participants at the first blood draw was 70 (range: 19-96). 

Participants' mean age at first draw was 70 years (range: 19-96), with a mean 5.7-year interval 

(range: 0.7-13) between samples. Mean VAFs were 6.7% and 9.5% at first and second draws, 



respectively. Most individuals (79%) had a single CHIP mutation, 16% had two, and 4% had 

three or more (Figure 1B). DNMT3A and TET2 were the most frequently mutated genes. Of the 

711 individuals, 74% had CHIP at both timepoints, while 26% had >2% VAF at only one draw, 

predominantly (78%) at the second draw. 

We modeled the growth rate r with a compound interest formula � �
����

����

�/���	
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SRSF2/SF3B1 (splicing factor) driver mutations exhibited the fastest average growth rate (~25% 

annually), while DNMT3A driver mutations showed the slowest rate (~7% annually) (Figure 

1C). 78% of mutations increased in VAF (annual growth rate > 1%), consistent with prior 

studies.5,7 Decreases in VAF (annual growth rate < -1%) were observed in 30% of JAK2, 21% of 

ASXL1, 25% of DNMT3A, 19% of PPM1D, 19% of TET2, and 0% of SRSF2/SF3B1 

mutations. While certain driver genes are more prone to expansion, CHIP expansion rates varied 

considerably among individuals with the same driver gene. This variability may necessitate 

larger sample sizes in prospective randomized controlled trials aiming to identify drugs that slow 

expansion. 

We analyzed individuals with two CHIP mutations, which may co-occur as subclones or 

in distinct cells (Figure 1D). Mutation pairs were classified as subclones if their growth rates 

were within 0.6 standard deviations of each other; otherwise, they were considered distinct. Of 

116 individuals with two mutations, 66 (57%) had subclones. Subclones showed significantly 

lower growth rates than distinct clones (β = -0.15, P = 0.02) (Figure 1E). This finding was 

robust for multiple definitions of distinct versus subclones (standard deviation thresholds ranging 

from 0.4 to 0.8). Co-occurrence analysis of CHIP mutations by driver gene (Figure 1F) revealed 

that JAK2 and SF3B1/SRSF2 co-occurred significantly more often than expected (OR=48.7, 



p=0.0006). Two mutations in TET2 (OR=6.6, p=0.001), DNMT3A (OR=3.8, p=0.006), and 

PPM1D (OR=8.7, p=0.02) also occurred more frequently than chance. Conversely, DNMT3A 

and TET2 co-occurred less often than expected based on frequency (OR=0.4, p=0.02) (Figure 

1G). 

We investigated individual determinants of CHIP expansion rate. When accounting for 

driver gene mutations, growth rate showed no significant association with age (P = 0.07), body 

mass index (P = 0.68), biological sex (P = 0.89), or smoking status (P = 0.70). Our targeting 

assay included probes for germline variants previously linked to CHIP prevalence and estimated 

growth rate (Figure 2A).1,8 Each additional G allele in rs1800057 (ATM) correlated with 

increased growth rate (β = 0.46, 95% CI: 0.23 to 0.67, P<0.001, Figure 2B), potentially 

explaining its association with CHIP prevalence.1 Consistent with NHLBI's TOPMed cohort 

findings,9 each T allele at rs2887399 (in the TCL1A promoter) associated with increased 

DNMT3A expansion rate (P=0.04) and decreased TET2 expansion rate (P=0.02) (Figure 2C). 

We investigated associations between medication exposure duration and CHIP growth 

rate. While no medications showed significant associations after multiple hypothesis correction, 

several demonstrated suggestive effects (Figure 2D). Three drugs suggested reduced annual 

growth rates: colchicine (β = -3.5%, 95% CI: -0.5% to -7%, P=0.03), denosumab (β = -2.5%, 

95% CI: -0.3% to -5%, P=0.03), and methylprednisolone (β = -1.0%, 95% CI: -0.4% to -2%, 

P=0.01). These associations have biological plausibility: methylprednisolone has anti-

inflammatory effects, colchicine may abrogate cardiovascular risk in TET2 CHIP, and 

denosumab inhibits RANKL, which DNMT3A-mutated monocytes overexpress in bone.10 

Conversely, hydroxychloroquine suggested increased annual growth rate (β = 3.1%, 95% CI: -

0.3% to -5%, P=0.03). Moreover, we performed 3:1 case-control matching by age, sex, CHIP 



driver gene, baseline VAF, and drug indication for each drug and tested the association with 

growth rate. In this sensitivity analysis, we observe an association between exposure duration 

between sequencing timepoints of colchicine and methylprednisolone and decreased growth rate. 

In external validation cohort Clonal Hematopoiesis and Inflammation in the VasculaturE 

(CHIVE)11, 4/5 mutations exposed to colchicine and 8/10 exposed to methylprednisolone 

showed reduced or unchanged VAF (Supplementary Figures 2). We found no associations 

between pre-existing diagnoses and CHIP expansion rate (Figure 2E). The lack of association 

between preexisting atherosclerosis and CHIP growth rate supports a unidirectional association 

between clonal hematopoiesis and atherosclerosis.12 

We investigated the consequences of CHIP expansion rate on blood counts and diagnoses 

after the second blood draw. Analyzing associations between growth rate and time to blood cell 

count abnormalities (as per Niroula et al.13), we found that rank-inverse normalized growth rate, 

adjusted for age, initial VAF, and sex, was associated with shorter time to high myeloid cell 

parameters (HR = 1.14, 95% CI 1.02-1.27) and low myeloid cell parameters (HR = 1.20, 95% CI 

1.05-1.36). No associations were found with lymphocytosis (P=0.48) or lymphopenia (P=0.53). 

Annual growth rate >16% increased risk of both high and low myeloid cell parameters (P=0.003 

and P<0.001, respectively) (Figure 3A). A 1% increase in annual growth rate suggested a 1.6-

fold increased risk of myeloproliferative disorders (95% CI: 1.1-2.5, P=0.02), though this was 

not significant after multiple-hypothesis correction (Figure 3B). These findings indicate that 

growth rate signals heightened disease risk in individuals with CHIP. 

We next examined changes in clinical risk scores over time, focusing on the Clonal 

Hematopoiesis Risk Score (CHRS) for 138 individuals with complete blood count data within 6 

months of sequencing.14 Of 115 individuals initially classified as low risk (CHRS ≤ 9.5), 24 



(21%) were reclassified as intermediate risk (10 < CHRS < 12) at the second blood draw (Figure 

3C). Among 21 initially intermediate-risk individuals, 4 (19%) were reclassified as low risk, and 

1 (5%) as high risk (CHRS ≥ 12.5). Only 2 individuals were classified as high risk overall. Risk 

category changes were primarily driven by alterations in blood counts (Figure 3D). All 

individuals with CHRS category changes showed alterations in RDW, MCV, or blood counts, 

while only 5 (17%) exceeded the 20% VAF threshold, all of whom also had blood count 

changes. These findings suggest that repeated blood sequencing may be unnecessary without 

accompanying laboratory abnormalities. 

Our study has notable limitations. Despite being the largest cohort of longitudinal CHIP 

clonal dynamics to-date, we lack power to detect clinical consequences of CHIP growth rate due 

to the short inter-draw interval and low-risk population. The exclusion of individuals with 

hematologic malignancies further limits our ability to detect associations between CHIP growth 

rate and these phenotypes. Additionally, associations between medication exposure and growth 

rate are susceptible to confounding by indication, although we observed no associations between 

pre-existing diagnoses and growth rate for the medications of interest and colchicine and 

methylprednisolone had a significant negative association in matched controls. 

In conclusion, we present the largest longitudinal study of CHIP dynamics to date. Our 

findings demonstrate that germline genetics, medications, driver genes, and mutation numbers 

significantly influence CHIP growth rates, with considerable individual variation. As targeted 

CHIP panels become more accessible, clinicians may leverage these identified risk factors and 

CHIP trajectories to better assess clinical risk in individuals with CHIP. 
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Figure Captions 

Figure 1: Cohort characteristics and co-occurring clonal hematopoiesis of indeterminate 

potential (CHIP) mutations. 

(A) Our cohort consists of 892 CHIP mutations in 711 individuals. We calculated growth rate 

using a compound interest formula for sequencing at two blood draws. 

(B) Larger bar plot demonstrates the number of CHIP  with a mutation in a driver gene. Smaller 

bar plot shows the number of individuals with 1, 2, 3, and 4 CHIP mutations. 

(C) Box plot of growth rate, calculated with a compound interest formula, for each CHIP 

mutation by driver gene with number of individuals with mutations in the driver gene shown 

below the gene name. Red diamond represents the mean growth rate. Box represents the 

interquartile range of the growth rate. Middle line in the box represents the median of the growth 

rate. 

(D) Theoretical example of possible trajectories for individuals with two CHIP mutations. The 

mutations can either be in distinct cell populations or the same cell population. Variant allele 

fraction (VAF) trajectories for each of these scenarios should follow similar trends to this 

example. Each mutation is represented by color, and the line represents change in VAF between 

first and second blood draws. 

(E) Box plot showing the difference in average growth rate of the fastest growing mutations for 

the 116 individuals grouped into the distinct vs sub-clone categories. The red diamond represents 

the average of the growth rate. Box represents the interquartile range of the growth rate. Middle 

line in the box represents the median of the growth rate. The x-axis is the growth rate while the 

y-axis is the category. 



(F) Upset plot showing the different combinations of driver genes represented within the group 

of 116 individuals with multiple CHIP mutations. Above the upset plot is a bar plot showing the 

distribution between distinct vs sub-clone trajectories for each of the driver gene combinations, 

with driver gene on the x-axis and count on the y-axis. 

(G) Heat map showing the deviation from random for the co-occurrence of each driver gene pair 

for the 116 individuals with 2 CHIP mutations. Each gene pair was tested with a Fisher’s exact 

test to identify deviation from expected occurrence via random chance. The x and y-axes 

represent each gene in a pair, the color of the box represents the direction of the deviation from 

random, and the darkness of the hue represents the magnitude of the deviation. For gene 

combinations with a p-value >0.05, the odds ratio is displayed, and the box is marked with “*” 

and for gene combinations that passed multiple-hypothesis correction with a p-value of <0.001, 

the odds ratio is displayed and the box is marked with “**”. 

  

Figure 2: Determinants of clonal hematopoiesis of indeterminate potential (CHIP) growth 

rate. 

(A) Forest plot of change in annual growth rate (%/year) with each additional copy of the 

alternate allele (alt allele) for select germline single nucleotide polymorphisms (SNPs) detectable 

with the targeted sequencing assay among individuals with CHIP mutations. Effect estimate 

represents the coefficient of a linear regression of growth rate and number of alternate alleles 

modeled additively as 0, 1, or 2, adjusting for age, sex, race, and variant allele fraction at first 

sequencing. We computed the 95% confidence interval (95% CI) as the Effect Estimate +/- 1.96 

* Standard Error. The p-value tests the null hypothesis of the effect estimate being 0. 



(B) Violin plot of annual growth (%/year) for 0 versus > 1 G allele for germline variant 

chr11:108272729:C:G in ATM. When modeled additively, each additional G allele is associated 

with greater annual growth rate (%/year) in multiple linear regression by 0.46% per year (95% 

CI: 0.23 to 0.67, P<0.001). There were 619 CHIP mutations in individuals with 0 G alleles, 26 in 

individuals with 1 G allele, and 2 in individuals with 2 G alleles. 

(C) Violin plot of annual growth (%/year) for 0, 1, and 2 T alleles for germline variant 

chr14:95714358:G:T in TCL1A for DNMT3A CHIP (left) and TET2 CHIP (right). When 

modeled additively, each additional T allele is associated with greater annual growth rate 

(%/year) for TET2 CHIP mutations (P=0.03), but not for DNMT3A CHIP mutations (P=0.49). 

There were 132 TET2 mutations in individuals with 0 T alleles, 54 TET2 mutations in individuals 

with 1 T allele, and 6 TET2 mutations with 2 T alleles. There were 158 DNMT3A mutations in 

individuals with 0 T alleles, 95 DNMT3A mutations in individuals with 1 T allele, and 28 

DNMT3A mutations in individuals with 2 T alleles. 

(D) Forest plot of change in annual growth rate (%/year) with each additional prescription month 

of 4 select drugs with suggestive associations: colchicine, denosumab, methylprednisolone, and 

hydroxychloroquine. Black effect estimate represents the coefficient of a linear regression of 

growth rate and number of months exposed to the drug adjusting for age, sex, race, and variant 

allele fraction at first sequencing with all data. Gray effect estimate represents the coefficient of a 

linear regression of growth rate and number of months exposed to the drug for 3:1 matched non-

drug-exposed controls to drug-exposed cases (matched by age, sex, CHIP driver gene, variant 

allele fraction at first sequencing). We computed the 95% confidence interval (95% CI) as the 

Effect Estimate +/- 1.96 * Standard Error. The p-value tests the null hypothesis of the effect 

estimate being 0. N represents the number of individuals prescribed the drug for at least 1 month.  



(E) Forest plot of change in annual growth rate (%/year) among individuals with select pre-

existing diagnoses based on phecodes. Individuals had to have their first diagnosis of the 

phecode before their second blood draw. Estimate represents the coefficient of a linear regression 

of growth rate and presence of diagnosis as a binary variable adjusting for age, sex, race, and 

variant allele fraction at first sequencing. We computed the 95% confidence interval (95% CI) as 

the Effect Estimate +/- 1.96 * Standard Error. The p-value tests the null hypothesis of the effect 

estimate being 0. N represents the number of individuals with the diagnosis in each regression. 

Figure 3: Phenotypic consequences of growth rate 

(A) On the left, Kaplan-Meier curve of time to low myeloid counts – defined as 

thrombocytopenia (platelet count < 169.06x109 cells/L), anemia (red blood cell count < 

3.96x1012 cells/L) or neutropenia (neutrophil count < 1.47x109 cells/L) for individuals with a 

CHIP growth rate > 16% annually (red) and < 16% annually (gray). A Cox proportional hazard 

model of time to low myeloid counts and rank-inverse normalized growth rate, when adjusting 

for age, variant allele fraction (VAF) at the first blood draw, and sex was significant (HR = 1.20, 

95% CI 1.05-1.36, P<0.001). On the right, Kaplan-Meier curve of time to high myeloid counts – 

defined as thrombocytosis (platelet count > 397.1x109 cells/L), polycythemia (red blood cell 

counts > 5.5x1012 cells/L), or elevated neutrophil count (neutrophil count > 7.06x109 cells/L) for 

individuals with a CHIP growth rate > 16% annually (red) and < 16% annually (gray). A Cox 

proportional hazard model of time to high myeloid counts and rank-inverse normalized growth 

rate, when adjusting for age, VAF at the first blood draw, and sex was significant (HR = 1.14, 

95% CI 1.02-1.27, P=0.003). 

(B) Forest plot showing the association between growth rate and time to event for the listed 

phenotypes. Out of the 711 individuals in the study, individuals who had a phenotype for the first 



time after the second blood draw are included, with each phenotype sample size listed in the 

figure. 

 (C) Heatmap showing Clonal Hematopoiesis Risk Score (CHRS) category at the first blood 

draw (TP1) versus risk at second blood draw (TP2) for N=134 individuals with data available to 

compute a CHRS (blood counts, mean corpuscular volume, and red cell distribution width). As 

per Weeks et al43, low risk was defined as CHRS ≤ 9.5, intermediate risk as 10 < CHRS < 12, 

and high risk as CHRS ≥ 12.5. Darker hues represent higher numbers of individuals, and exact 

counts are displayed for each category. 

(D) Heatmap showing the change in each of the CHRS criteria for the N=30 individuals that 

shifted into a different risk category between first and second blood draw. The x-axis represents 

each individual and the y-axis represents the CHRS components, which are faceted based on 

what clinical test would need to be performed to ascertain that information (i.e., none, blood 

panel, and sequencing). The color of the box represents the direction of the change (red is 

positive and blue is negative) and the darkness of the hue represents the magnitude of the 

change. 

 









Supplementary Figure 1: Flowchart representing patient selection criteria for inclusion in the 
study. CHIP = Clonal hematopoiesis of indeterminate potential. MTP = multiple time point. 
VAF = variant allele fraction. Mack et al, 2024 is reference 6 in the manuscript. 
 



 
Supplementary Figure 2: (A) Clonal trajectories of 6 clones in 4 individuals with multiple 

sequencing blood draws while taking colchicine plotting variant allele frequency (VAF) over 

time in months from the Clonal Hematopoiesis and Inflammation in the VasculaturE (CHIVE) 

cohort. Green dotted line represents the starting of colchicine. Red dotted line represents the 

discontinuation of colchicine. Patient ID and CHIP driver gene is shown in each subfigure title. 

(B) Clonal trajectories of 10 clones in 5 individuals with multiple sequencing blood draws while 

taking oral methylprednisolone plotting variant allele frequency (VAF) over time in months from 

the Clonal Hematopoiesis and Inflammation in the VasculaturE (CHIVE) cohort. Green dotted 

line represents the starting of methylprednisolone. Red dotted line represents the discontinuation 

of methylprednisolone. Patient ID and CHIP driver gene is shown in each subfigure title. 

  



Supplementary Table 1: Targeted Capture regions for identifying a CHIP mutation. Genomic 
coordinates are provided per the hg38 reference genome. 
 

Chromosome Start Stop Gene 

chr1 1806469 1806543 GNB1 

chr1 1815750 1815867 GNB1 

chr1 43349257 43349363 MPL 

chr1 114713799 114713978 NRAS 

chr1 114716047 114716162 NRAS 

chr2 25749689 25750420 ASXL2 

chr2 25753532 25753640 ASXL2 

chr2 25246614 25246781 DNMT3A 

chr2 25313907 25313989 DNMT3A 

chr2 25234273 25234425 DNMT3A 

chr2 25235701 25235830 DNMT3A 

chr2 25236930 25237010 DNMT3A 

chr2 25239124 25239220 DNMT3A 

chr2 25239484 25239518 DNMT3A 

chr2 25240296 25240455 DNMT3A 



chr2 25240634 25240735 DNMT3A 

chr2 25241556 25241712 DNMT3A 

chr2 25243892 25243987 DNMT3A 

chr2 25244149 25244343 DNMT3A 

chr2 25244534 25244657 DNMT3A 

chr2 25245247 25245337 DNMT3A 

chr2 25246014 25246069 DNMT3A 

chr2 25246154 25246314 DNMT3A 

chr2 25247045 25247163 DNMT3A 

chr2 25247585 25247754 DNMT3A 

chr2 25248031 25248257 DNMT3A 

chr2 25249651 25249729 DNMT3A 

chr2 25251906 25252099 DNMT3A 

chr2 25252188 25252202 DNMT3A 

chr2 25274935 25275092 DNMT3A 

chr2 25275494 25275548 DNMT3A 

chr2 25282382 25282716 DNMT3A 

chr2 25300133 25300248 DNMT3A 



chr2 208243524 208243601 IDH1 

chr2 208248358 208248421 IDH1 

chr2 197400709 197400941 SF3B1 

chr2 197401979 197402135 SF3B1 

chr2 197405269 197405477 SF3B1 

chr2 197416735 197416916 SF3B1 

chr2 197400049 197400171 SF3B1 

chr2 197400246 197400439 SF3B1 

chr2 197401394 197401530 SF3B1 

chr2 197401736 197401893 SF3B1 

chr2 197402550 197402831 SF3B1 

chr2 197402943 197403040 SF3B1 

chr2 197403579 197403769 SF3B1 

chr2 197405070 197405182 SF3B1 

chr2 197407992 197408124 SF3B1 

chr2 197408363 197408586 SF3B1 

chr2 197409764 197410012 SF3B1 

chr4 54727217 54727324 KIT 



chr4 54733069 54733192 KIT 

chr4 54727415 54727542 KIT 

chr4 54727822 54727927 KIT 

chr4 54728010 54728121 KIT 

chr4 54729334 54729485 KIT 

chr4 54731327 54731419 KIT 

chr4 54731870 54731998 KIT 

chr4 54736497 54736609 KIT 

chr4 105233891 105237445 TET2 

chr4 105243564 105243783 TET2 

chr4 105269604 105269752 TET2 

chr4 105275042 105276524 TET2 

chr4 105241333 105241438 TET2 

chr4 105242828 105242932 TET2 

chr4 105259613 105259774 TET2 

chr4 105261753 105261853 TET2 

chr4 105272558 105272923 TET2 

chr9 5076681 5076701 JAK2 



chr9 5073683 5073800 JAK2 

chr11 119278160 119278302 CBL 

chr11 119278504 119278718 CBL 

chr12 22671265 22671359 ETNK1 

chr12 25225612 25225772 KRAS 

chr12 25227220 25227424 KRAS 

chr12 25245270 25245384 KRAS 

chr15 90088655 90088758 IDH2 

chr17 60656593 60656846 PPM1D 

chr17 60662989 60663557 PPM1D 

chr17 7669603 7669695 TP53 

chr17 7670603 7670720 TP53 

chr17 7673213 7673271 TP53 

chr17 7673301 7673344 TP53 

chr17 7673529 7673613 TP53 

chr17 7673695 7673842 TP53 

chr17 7674175 7674295 TP53 

chr17 7674814 7674976 TP53 



chr17 7675047 7675243 TP53 

chr17 7675988 7676277 TP53 

chr17 7676376 7676408 TP53 

chr17 7676515 7676627 TP53 

chr18 44951903 44952002 SETBP1 

chr20 32358770 32358837 ASXL1 

chr20 32359741 32359796 ASXL1 

chr20 32366378 32366472 ASXL1 

chr20 32369006 32369128 ASXL1 

chr20 32428122 32428253 ASXL1 

chr20 32428319 32428427 ASXL1 

chr20 32429332 32429436 ASXL1 

chr20 32429895 32430058 ASXL1 

chr20 32431315 32431489 ASXL1 

chr20 32431577 32431684 ASXL1 

chr20 32432874 32432990 ASXL1 

chr20 32433278 32433922 ASXL1 

chr20 32434426 32437343 ASXL1 



chr20 58910677 58910834 GNAS 

chr20 58909344 58909428 GNAS 

chr20 58909515 58909584 GNAS 

chr20 58909678 58909809 GNAS 

chr20 58909945 58910086 GNAS 

chr20 58910328 58910406 GNAS 

chr21 43094649 43094793 U2AF1 

chr21 43093096 43093254 U2AF1 

chr21 43094461 43094568 U2AF1 

chr21 43095432 43095541 U2AF1 

chr21 43095688 43095748 U2AF1 

chr21 43100447 43100524 U2AF1 

chr21 43101274 43101437 U2AF1 

chr21 43104309 43104407 U2AF1 

chr21 43107445 43107499 U2AF1 

chrX 155071527 155071650 BRCC3 

chrX 155072326 155072343 BRCC3 

  

 


