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Abstract
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Erythropoietin (Epo) controls the proliferation, dif-
ferentiation and survival of the erythroid progenitors.
This cytokine was cloned in 1985 and rapidly
became used for treatment of anemia of renal failure,
opening the way to the first clinical trials of a
hematopoietic growth factor. The clonage of one
chain of the Epo receptor followed in 1989, thereby
opening the research on intracellular signal trans-
duction induced by Epo. Epo is synthesized mainly by
the kidney and the liver and sequences required for
tissue-specific expression have been localized in the
Epo gene. A 3’enhancer is responsible for hypoxia-
inducible Epo gene expression. HIF-1 a and b pro-
teins bind to this enhancer. Gene regulation by
hypoxia is widespread in many cells and involves
numerous genes in addition to the Epo gene. The
Epo receptor belongs to the cytokine receptor fami-
ly and includes a p66 chain which is dimerized upon
Epo activation; two accessory proteins defined by
cross-linking remain to be characterized.  Epo bind-
ing induces the stimulation of Jak2 tyrosine kinase.
Jak2 activation leads to the tyrosine phosphoryla-
tion of several proteins including the Epo receptor
itself. As a result, different intracellular pathways
are activated: Ras/MAP kinase, phosphatidylinositol
3-kinase and STAT transcription factors. However,
the exact mechanisms by which the proliferation
and/or the differentiation of erythroid cells are reg-
ulated after Epo stimulation are not known. Further-
more, target disruption of both Epo and Epo recep-
tor showed that Epo was not involved in the com-
mitment of the erythroid lineage and seemed to act
mainly as a survival factor.
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Erythropoietin (Epo), a 34-kDa glycoprotein hor-
mone was the first hematopoietic growth factor to
be cloned. The role of Epo is to control red blood
cell production through the promotion of survival,
proliferation and differentiation of the erythroid
progenitors in the bone marrow. Because the main
function of red cells is to transport oxygen from the

lungs to the peripheral tissues, the regulation of Epo
production is an important feature of the control of
tissue oxygenation. Accordingly, Epo is the only
hematopoietic growth factor whose production is
regulated by hypoxia. Numerous reviews have been
published these last years on Epo biology.1-9 There-
fore, our aim is to emphasize on some aspects of
Epo biology which seem to us of particular interest.

Tissue-specific Epo gene expression
In a pioneering work published in 1977, Epo was

successfully purified by Miyake et al.10 from urine of
aplastic patients. Tryptic fragments of this urinary
Epo were then obtained and their amino acid
sequences permitted the synthesis of Epo DNA
probes for the isolation and cloning of the human
Epo gene.11,12 The use of recombinant Epo in the
treatment of anemia of chronic renal failure followed
shortly thereafter.13

The clonage of the Epo gene also allowed insights
to be gained into the molecular biology of Epo. In
the fetal stage, the liver is the major site of Epo syn-
thesis,14 however, the Epo gene also appears to be
strongly expressed in the mammalian mesonephric
kidney early in gestation.15 The renal synthesis of Epo
was first demonstrated by Jacobson et al.16 Studies on
mice have shown that Epo gene transcription was
stimulated by hypoxia or cobalt treatment,17 and
there was a clear correlation between induction of
anemia and increase of Epo mRNA content in the
kidney.18 It was further shown, by in situ hybridiza-
tion experiments, that Epo mRNA was produced by
interstitial cells of the kidney cortex.19,20 Epo mRNA
was also detected in interstitial cells within cyst walls
of polycystic kidneys.21

This specialized population of interstitial cells was
shown to be labelled by immunohistochemical stain-
ing with antibodies to 5' ectonucleotidase,22 and
thereby to belong to a fibroblast-like cell population
of the renal interstitium. 

Similar results were obtained in transgenic mice
containing the SV40 large tumor antigen (SV40 T-
antigen) placed behind the Epo gene regulatory
sequences; immunohistochemical detection of T-
antigen was found in the same fibroblast-like renal
interstitial cells.23 Unfortunately, the use of an onco-



gene like SV40 T-antigen did not induce any forma-
tion of tumor in the kidney, nor the establishment of
transformed cell lines from this interstitial cell popu-
lation in the kidney. In the absence of such cell lines,
more information is still necessary to fully understand
the mechanism of Epo synthesis in the kidney. In
addition, in renal adenocarcinomas associated with
polycythemia, the tumoral cells themselves which
derive from the epithelial tubular cells are producing
Epo.24 A possible explanation would be that a cellu-
lar cooperation in the kidney cortex is required for
Epo production. Interestingly enough, Epo mRNA
could be obtained from isolated perfused rat kidneys
but never from anatomically disrupted renal prepa-
rations.25

The liver accounts for 20% of the Epo production.
Hepatocytes surrounding central veins were respon-
sible for most of the Epo production in the liver,26

whereas other Epo-producing cells were shown to
belong to the Ito cells which share many similarities
with the fibroblast-like interstitial cells of the kidney.27

In addition to these two main sites of secretion,
low levels of Epo mRNA have been detected in lung,
testes and spleen when animals were subjected to
hypoxia.28,29 Epo is also produced in the brain by
astrocytes,30 accordingly Epo receptors have been
detected in mouse brain31 and in cell lines with neu-
ronal properties.32 These data suggest that Epo could
play a neurotrophic role in the brain and that the
hypoxic induction of brain Epo could protect neu-
rons from ischemia-induced cell death.33

Regulation of Epo production
Epo production is regulated by hypoxia that leads

to an increase of the level of gene transcription;34 there
are no preformed stores of Epo. Control of Epo gene
expression involves complex interactions between
DNA and nuclear proteins. To gain insights into tis-
sue-specific Epo gene expression, Semenza et al. devel-
oped several constructs of human Epo gene contain-
ing various lengths of cis regulatory regions for pro-
duction of transgenic mice. The pattern of human
Epo gene expression in these transgenic mice led the

authors to describe different DNA sequences located
in cis of the Epo gene and required for tissue-specificity
and hypoxia-inducible gene expression.35 Sequences
required for expression in the kidney have been local-
ized to a region located 9.5 to 14 kb from the 5' end
of the human Epo gene.36 A negative regulatory ele-
ment which represses Epo gene expression in non-Epo
producing cells is located in a region 0.4 to 6 kb from
the Epo transcription start site.37 A 50 bp hypoxia-
inducible enhancer has been defined approximately
120 bp from the 3' end of the polyadenylation site,
and is responsible for hypoxia-inducible Epo gene
expression.38-40 Mice transgenic for a construct con-
taining the Epo gene and this 3' enhancer harbored
hypoxia-inducible Epo gene expression in the liver.

The 3' enhancer contains three different seg-
ments.41 A conserved sequence located near the 5'
end of the enhancer is the binding site for a new tran-
scription factor designated hypoxia-inducible factor
1 (HIF-1).42,43 The middle segment is less conserved
between species, but seems to play a role in the
inducibility of both the human and the murine Epo
enhancers.44 The third part corresponds to 3' DNA
sequences which are binding sites for hepatocyte
nuclear factor 4 (HNF-4). Proteins that bind to this
enhancer interact synergistically to stimulate Epo
gene transcription, and HNF-4 can augment tran-
scriptional activation mediated by the Epo enhancer
in hypoxic cells.45 Furthermore, the C-terminal por-
tion of HIF-1 specifically binds to P300 and overex-
pression of P300 enhances hypoxic induction.46 Thus,
it is likely that hypoxia induces the formation of a
large complex of proteins directly or indirectly bound
to the enhancer, which in turn transduces a signal to
the Epo promoter, thereby permitting gene tran-
scription47 (Figure 1).

The identification of HIF-1 as a DNA transcriptional
complex has been a critical step to understanding the
enhancer function. Affinity purification showed that
HIF-1 is composed of two subunits.41,48 Molecular
cloning of HIF-1 by Semenza et al.49 showed that the
DNA binding complex was composed of two basic-
loop-helix PAS proteins called HIF-1a and HIF-1b.
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Figure 1.  Cis elements and Trans-acting factors involved in Epo gene regulation.  The 5 exons of the Epo gene are represent-
ed, coding portions are solid areas. KIE: kidney inducible elements; NRE: negative regulatory elements. From H.F. Bunn and
R.O. Poyton.56



HIF-1b had previously been identified as the aryl
hydrocarbon nuclear receptor translocator (ARNT), a
molecule involved in the xenobiotic response.50 In
contrast, HIF-1a was a new member of this family of
PAS proteins. In hypoxic conditions, the levels of the
mRNAs encoding either HIF-1a or HIF-1b were not
altered, suggesting that the activity of the HIF-1a-
ARNT complex is regulated by a post-transcriptional
mechanism and a conformational change after
recruitment of the ARNT transcription factor.51. Fur-
thermore, another step of regulation of HIF-1a
involves the ubiquitin-proteasome system in its pro-
teolytic destruction in normoxia, while it accumulates
rapidly following exposure to hypoxia.52

The mechanism of regulation by hypoxia was first
studied in hepatoma cells Hep3B or HepG2 which
produced Epo. It was further shown that identical
responses could be obtained in a large array of non-
Epo producing cells and that the system of gene reg-
ulation by oxygen was widespread from mammalian
to insect cells.53,54 Many genes have now been iden-
tified as targets of HIF-1 function; these include in
addition to Epo, vascular endothelial growth factor
(VEGF), several glycolytic enzymes, glucose-trans-
porter 1, inducible nitric oxide synthase, heme oxy-
genase and transferrin.55 These recent data strength-
en the idea that cellular response to hypoxia is an
important physiological process and that a similar
mechanism for oxygen sensing and signal transduc-
tion must be shared by many tissues and cells.56 How-
ever, oxygen-sensing mechanisms are still not com-
pletely understood. According to the model of
Hep3B cells, a single cell type apparently can sense
hypoxia and respond by increasing Epo RNA levels.5

It was proposed that the oxygen sensor is a heme pro-
tein that changes its conformation depending on the
binding of oxygen to its heme moiety. The iron atom
of heme can be replaced by cobalt, thereby mimick-
ing the hypoxic state.57 This explanation remains very
plausible but the exact mechanism of activation of
transcription factors by hypoxia remains, however,
to be determined.

Structure of the Epo receptor
The number of Epo receptors (EpoR) at the cell sur-

face of normal or transformed erythroid cells is low:
around one thousand per cell (reviewed in ref. #58).
The receptors are mainly expressed at the colony-form-
ing unit erythroid (CFU-E) stage, receptor expression
then decreases with erythroid maturation.59

One chain of the EpoR was cloned by an expression
strategy from murine erythroleukemia cells.60 This 66
kDa protein confers Epo-binding ability to transfect-
ed cell lines, both of hematopoietic and non hema-
topoietic lineages. In addition to this cloned chain,
cross-linking of Epo to the cell surface of erythroid
cells detects the association of Epo with two acces-
sory molecules, one of 85 kDa and one of 100 kDa.

These proteins are associated with p66 but are not
recognized by anti-p66 antibodies.61 Moreover, in the
presence of truncated forms of p66, the apparent
molecular masses of p85 and p100 are unchanged,
thereby demonstrating that these proteins are indeed
different from p66.62,63 Isolation of these proteins is
an important challenge to fully understand the struc-
ture of the Epo receptor.

The p66 cloned chain of the EpoR is a 507 amino-
acid type I membrane spanning protein and belongs
to the cytokine receptor family.64 In the extracellular
domain, a WSXWS sequence and two pairs of cys-
teines are hallmarks of this receptor family. These two
structures seem to be required for the correct folding
and cell surface expression of the molecule.65 Epo
appears to activate the EpoR by dimerization of the
p66 protein.66 The first EpoR molecule binds Epo with
a high affinity (Kd around 1 nM) whereas the second
EpoR molecule binds to the complex with a lower
affinity (Kd around 2 µM). It is possible that these 2:1
complexes are further stabilized by the accessory pro-
teins described above, and/or by interactions in the
intracellular domains of these clustered EpoRs.66 The
active sites of Epo have been mapped using mutation
and deletion experiments.67-69 Two sites have been
identified, each is believed to associate with one mol-
ecule of p66 EpoR.68 A model of the complex between
Epo and EpoR has been proposed,70 which is remi-
niscent of the structure of the growth hormone and its
receptor obtained by crystallization studies.71

Besides Epo binding, EpoR can be activated by oth-
er mechanisms. The gp55 envelope of the murine
Friend virus is able to bind and to interact directly
with the EpoR which becomes constitutively activat-
ed.72 Interestingly, some of these gp55 proteins are
dimerized by disulfide bonds at the cell surface, thus
leading to the dimerization of the associated EpoR.73

Moreover, a constitutive activation of the EpoR has
been obtained by mutation in the extracellular
domain of the Arg 129 residue into a Cys.74 The pres-
ence of a Cys residue allows the formation of a disul-
fide bond between two EpoR molecules and thus
dimerization of the receptor. This mutation of the
EpoR is also tumorigenic.75 Bivalent anti-p66 anti-
bodies have been reported to activate the EpoR,
probably by inducing the dimerization of this recep-
tor.76 Finally, small synthetic peptides that do not
share any sequence homology with the Epo molecule
are also able to mimic the biologic effects of Epo
when they are dimerized but with a lower affinity.77,78

Despite an increase of potency after covalent dimer-
ization, clinical replacement of Epo by these peptides
does not seem realistic considering the difference in
biological activity from native Epo.79 Thus, all the
mechanisms that lead to an activation of the Epo
receptor are also responsible for its dimerization. The
participation of the p85 and p100 accessory proteins
in this stoichiometry remains to be determined. 
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Signalling induced by Epo
Like all the receptors of the hemopoietin receptor

family, the EpoR does not possess endogenous tyro-
sine kinase activity. Despite this fact, Epo stimulates
the rapid tyrosine phosphorylation of a number of
proteins (Figure 2). The first step of intracellular sig-
nalling is activation of Jak2 tyrosine kinase which is
constitutively associated with the EpoR.80 Jak2 is
known to associate with the EpoR in a region close
to the transmembrane that involves the Box 1 motif,
and deletion of this part of the EpoR totally inhibits
Epo-induced cellular proliferation.81 Lyn tyrosine
kinase has recently been reported to associate with
the EpoR in the J2E1 cell line, and to play a role in its
Epo-induced erythroid differentiation.82 It is not
known if Lyn plays a similar role in other erythroid
cells.

Among the proteins phosphorylated on tyrosine
residues in response to Epo is the EpoR itself.83-86

Most, if not all, of the eight tyrosines which are locat-
ed in the cytoplasmic domain of the EpoR are phos-
phorylated after Epo stimulation.  These phosphory-
lated tyrosines are in turn docking sites for various
intracellular proteins containing src homology 2
(SH2) domains. After binding, these proteins can be
subsequently tyrosine phosphorylated and activated.
Therefore, the stimulation by Epo leads to localiza-
tion close to the receptor and the plasma membrane
of different activated  molecules which participate in
downstream signal transduction (Figure 3). 

The Ras/MAP kinase pathway is activated by
Epo.87,88 This pathway is involved in cell proliferation
in response to Epo, and raf-1 antisense oligonu-
cleotides have been shown to inhibit such cell prolif-
eration.89 On the other hand, other investigators
found that Ras/MAPK activation was not required for
Epo-induced proliferation.88 The presence of fetal calf
serum which directly activates the Ras/MAPK path-
way could be an explanation for this discrepancy.9

A direct association between PI 3-kinase and the
EpoR has been shown.90-93 This involves the SH2
domains of the p85 subunit of the PI 3-kinase and the
last tyrosine of the EpoR. An alternative pathway for
the activation of PI 3-kinase has been recently
described which involves tyrosine phosphorylation of
the adaptor protein IRS2 and its subsequent associa-
tion with PI 3-kinase; this mode of activation therefore
does not require the interaction of PI 3-kinase with the
EpoR tyrosines.94 An interesting pathway downstream
of PI 3-kinase, leading to the sequential activation of
SHIP95,96 and AKT97 has been recently described. The
Ser/Thr kinase AKT appears to play a major role in the
inhibition of apoptosis after stimulation by cytokines
such as IL-3 or IGF-1.98 It remains to be determined
whether similar AKT activation and protection from
apoptosis exists after Epo stimulation.

The STAT (Signal Transducer and Activator of Transcrip-
tion) pathway also plays a major role in cytokine-
induced signalling.99 Epo activates both STAT5A and

STAT5B.100-102 The two first tyrosines of the intracellu-
lar domain of the EpoR (Tyr 343 and Tyr 401) are
responsible for STAT5 fixation and activation.103-107

Despite a large number of publications, the precise
role of STAT5 in the signalling induced by Epo is the
subject of controversy. Whereas a correlation between
STAT5 activation and cell proliferation was described
by some groups,104,105,108 others did not obtain such
results.106,107 Furthermore, a correlation between
STAT5 activation and Epo-mediated erythroid differ-
entiation was observed in some reports,109,110 while the
opposite was shown by others.108 One possible expla-
nation is the use of different erythroleukemic cell lines
which may respond with various intracellular path-
ways to the same cytokine. Alternatively, there is some
redundancy in function between the different STAT
proteins, especially STAT5 and STAT6. It is therefore
difficult to elucidate their exact mode of action, even
after gene disruption.

Two tyrosine phosphatases, SHP-1 and SHP-2, also
play a role in Epo-induced signalling. SHP-2 is phos-
phorylated on tyrosine in response to Epo and asso-
ciates with the second tyrosine residue of the EpoR
(Tyr 401); SHP-2 seems to play a positive role in stim-
ulating cell proliferation.111 In contrast, SHP-1 plays
a negative role in Epo-induced signal transduction;
its association with Tyr 429 of the EpoR leads to the
dephosphorylation of Jak2.112 Interestingly, De La
Chapelle et al.113 described a familial erythrocytosis in
which a truncated EpoR was found in the poly-
cythemic members of the family; these truncated
receptors were shown to be hypersensitive to Epo
probably because they lacked the SHP-1 binding site.

Figure 2. Tyrosine-phosphorylated proteins associated with
the Epo-R in UT-7 cells. UT-7 cells were starved from Epo
overnight,and stimulated for 10 minutes with 10 U/mL Epo
or not. 53106 UT-7 cells immunoprecipitated with anti EpoR
antibodies were analyzed in each lane.



The role of tyrosine phosphorylation of the EpoR
in Epo-induced signalling is debated. An EpoR com-
pletely devoid of tyrosine residues is still able to trans-
duce a proliferative signal; some reports found that
these EpoR were less sensitive to Epo,62,104,105,114

whereas this decrease in sensitivity was not men-
tioned by others.103,107 Expression of b globin can be
obtained in Ba/F3 cells after transfection of mutant
EpoRs that do not contain any tyrosine residues.62,114

However, in normal erythroid progenitors, the last
tyrosine of the EpoR cytoplasmic domain (Tyr 479)
seems to be required for erythroid colony forma-
tion.115,116 This Tyr 479 is sufficient to obtain ery-
throid differentiation of progenitors from fetal liv-
er;116 similar properties were recently reported by
Longmore et al. in an in vivo model.117

Another cytokine receptor belonging to the tyro-
sine kinase receptor family, the stem-cell-factor recep-
tor or c-kit, seems to interact with the EpoR. It was
shown that this receptor associated with the extend-
ed box2 region of the EpoR and could activate and
phosphorylate the EpoR, thus enhancing erythroid
cell proliferation and differentiation.118 In addition,
this cooperation between c-kit and EpoR has been
found to be essential for normal erythroid differenti-
ation of progenitors derived from fetal liver.115 The
exact mechanism of the interaction between these
two receptors is, however, not clear and they seem to
act through distinct intracellular signals.119

Role of Epo in erythropoiesis
Cultures of hematopoietic progenitors in semi-sol-

id media have shown that the main targets of Epo are
the late erythroid progenitors, especially the colony
forming unit-erythroid (CFU-E). Indeed, studies on

knock out mice lacking Epo or the EpoR have shown
that Epo is crucial in vivo for the proliferation and sur-
vival of CFU-E and their irreversible terminal differ-
entiation, whereas it is not required for generation
of BFU-E and their differentiation to CFU-E.120-122

Thus, Epo does not appear to be involved in the com-
mitment of the erythroid lineage and seems to act
mainly as a survival factor, allowing both the main-
tenance of cell proliferation and the induction of
expression of erythroid specific proteins.123 A recent
report is in agreement with the idea that the EpoR
would function mainly to transduce anti-apoptotic
signals; in this work, erythroid progenitors from
murine fetal liver were able to differentiate fully into
erythroblasts after infection with prolactin receptors
and further stimulation with prolactin instead of
Epo.124 These prolactin receptors belong to the same
cytokine receptor family as the EpoR and it seems
that activation of this class of receptors during the
stem cell maturation process is sufficient to trigger
lineage differentiation, according to the stochastic
model. We obtained similar results after infection of
human CD34+ cells derived from cord blood with a
prolactin receptor (unpublished data). HCD57 cells
are murine erythroid cells which respond to Epo and
undergo apoptosis after Epo deprivation. However,
HCD57 cells infected with retroviral vectors encoding
Bcl-2 or Bcl-xL remain viable in the absence of Epo,
thereby confirming the anti-apoptotic role of Epo.125

The main indication of Epo treatment is for cor-
rection of anemia of renal failure. In some cases, this
treatment has been extended to anemia of chronic
diseases. In these disorders, cytokines involved in the
inflammatory response inhibit both Epo synthesis
and erythroid colony formation in vitro.126, 127 It was
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Figure 3. Schematic representation of the
intracellular part of the Epo-R.  Upon stim-
ulation by Epo, the p66 chain of the Epo-R
dimerizes. Jak2 tyrosine kinase, associat-
ed to the Epo-R close to the transmem-
brane region, is activated and phosphory-
lates most of the 8 tyrosine residues
which become docking sites for signal
transduction proteins.



recently shown that INFg downregulates SCF and
EpoR at the surface of the erythroid progenitors, thus
leading to reduction of the survival and growth of
these cells and eventually to apoptosis of the prog-
enitors.128 Further studies showed that interferon-g
induced the concomitant expression of Fas and Fas
ligand at the surface of the erythroid progenitors,
thereby leading to apoptotic cell death.129 More work
is needed to understand whether physiologic inter-
actions between the intracellular signals induced by
Epo and the Fas system play a role in erythroid cell
survival.

Conclusions
Considerable progress in understanding the phys-

iology of Epo has been made, especially in the mech-
anism of hypoxia-inducible gene regulation, and in
the identification of different  proteins involved in
Epo-induced signal transduction. Basic researches
are following two different directions. First, insights
have been gained into the regulation of the oxygen-
signalling pathway. HIF-1 is a crucial component for
hypoxia-induced regulation of many genes and this
process is widespread in a various array of cells. Sec-
ond, multiple pathways were depicted in the cyto-
kine-induced signalling cascade, but none was
described as being specifically triggered by Epo. It is
still not understood whether Epo is necessary for cell
proliferation, or differentiation or only for cell sur-
vival. Recent reports seem to favor the hypothesis
that there is some redundancy in the cytokines for
the survival and proliferation of the hematopoietic
cells. Further work is needed to determine the specif-
ic mode of action of Epo in the erythroid lineage.
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