
Abstract

ALL1 gene alterations in acute leukemia: biological and clinical aspects
GIUSEPPE CIMINO, MARIA CRISTINA RAPANOTTI, TERESA SPROVIERI, LOREDANA ELIA

Dipartimento di Biotecnologie Cellulari ed Ematologia, Università degli Studi "La Sapienza" di Roma, Italy

Haematologica 1998; 83:350-357 molecular basis of disease

Correspondence: Giuseppe Cimino, MD, Dipartimento di Biotecnologie
Cellulari ed Ematologia, Università “La Sapienza”, via Benevento 6,
00161 Rome, Italy.
Phone: international +39-6-85795530 • Fax: international +39-6-
44241984 • E-mail: cimino@dbu.uniroma1.it

Background and Objective. The ALL1 gene, also
referred to as MLL, HRX or Htrx1, is interrupted in
the vast majority of translocations involving the chro-
mosome band 11q23. Alterations in this gene are
reported in approximately 5-10% of acute leukemias
(AL) and characterize different leukemic subtypes
such as infant (< 12 months of age) AL, topoiso-
merase II inhibitors-related (TR) AL and a small sub-
set of de novo AML and ALL. Distinguishing features
of ALL1 alterations include the striking heterogene-
ity of its recombinations, i.e. more than 30 chromo-
some partners have been described in ALL1 re-
arrangements, and the lack of association with a
definite lineage. The objective of this article is to
review the biological and structural properties of
ALL1 gene and its various fusion proteins, and to dis-
cuss the clinical relevance of these lesions with spe-
cial emphasis on their role in molecular diagnosis
and monitoring of minimal residual disease.

Evidence and Information Sources. The material
examined in the present review includes data pub-
lished by the authors in this field, articles and
abstracts published in journals covered by the Sci-
ence Citation Index® and Medline®, as well as some
more recent personal unpublished observations.

State of the Art. The ALL1 gene spans approximate-
ly 90 kb of DNA in length, and consists of 36 exons,
ranging in size from 65 bp to 4249 bp. ALL1 codifies
for a major transcript of > 15 kb. It encodes a pro-
tein of more than 3910 amino acids, containing
three regions sharing sequence homology with  the
Drosophila trithorax gene. These homologies sug-
gest that ALL1 is a transcription factor controlling
development and/or differentiation of human cells.
To date, twelve ALL1 partner genes have been char-
acterized which are involved in the following translo-
cations: t(4;11), t(9;11), t(6;11), t(11;19), t(1;11)
t(10;11), t(11;16), t(11;17) and t(X;11). Since all
these genes do not share relevant homologies
among each other, their putative role in ALL1 acti-
vation still remains to be clarified. The analysis of
ALL1 breakpoint cluster region (bcr) shows that sev-
eral DNA motifs implicated in illegitimate recombi-
nation events are located within the bcr. Thus, map-
ping of breakpoints in the different subtypes of
ALL1+ve leukemia may help in understanding the
events leading to translocations in human ALs. In

this respect, data on ALL1 breakpoint localization
suggest that similar pathogenetic mechanisms may
underlie infant and TR AL and that these events
might differ from those occurring in de novo AL. The
availability of this molecular marker provides a new
tool for diagnostic purposes and characterization of
ALs and for monitoring of minimal residual disease.
To date, the prognostic value of ALL1 rearrange-
ments has been clearly demonstrated for infant ALs
only, whereas the clinical relevance of ALL1
rearrangements in the other leukemic subtypes
needs further evaluation by future prospective stud-
ies on a larger number of patients homogeneously
treated. As concerning studies on minimal residual
disease, data on PCR monitoring of the ALL1/AF4
fusion transcript, resulting from the t(4;11) translo-
cation, show the clinical relevance of this molecular
test in predicting outcome and, as a consequence,
in designing individual post-remission therapies.

Perspectives. It is expected that future studies will
provide more detailed information regarding either
the normal ALL1 function and/or the leukemogenic
effect of ALL1 alterations, together with a better def-
inition of the prognostic relevance of the hybrid pro-
teins formed by this gene at diagnosis and during
remission of disease.
©1998, Ferrata Storti Foundation
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Acute leukemia (AL), like other human malig-
nancies, is a progressive clonal disease driven
by somatically acquired genetic changes.

However, unlike most solid tumors, AL is more fre-
quently characterized by specific genetic alterations
such as translocations and inversions, which lead to
the activation of proto-oncogene products usually
through the creation of tumor specific fusion pro-
teins.1-5

Increasing biological evidence indicates that dif-
ferent genetic lesions underlie the phenotypic vari-
ability observed in AL subtypes. For example, gene
rearrangements involving the immunoglobulin super-
family genes usually occur in lymphoid tumors. More
specifically, abnormalities involving the T-cell recep-
tor chains are almost exclusively found in T-lymphoid
malignancies.2-4 As for hybrid fusion genes, relevant
examples include PML/RARa, AML1/ETO, CBF-
b/MYH11, and E2A/PBX, which are associated with
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FAB M3, M2, and M4eos acute myeloid leukemia
(AML) and with pre-B subtype of acute lymphoblas-
tic leukemia (ALL), respectively.6-10 On the other hand,
in apparent contrast to this paradigma, distinct
rearrangements of the chromosomal band 11q23 are
observed in a variety of leukemia and lymphoma sub-
types.

Recently, we and others have cloned and charac-
terized the ALL1 gene (also referred to as MLL, HRX,
Hrtx1), which is interrupted in the vast majority of
translocations involving the 11q23 region.11-15 Alter-
ations in this gene are detected in approximately 5-
10% of AL cases, and characterize different leukemic
subtypes including infant and topoisomerase II
inhibitor-related (TR) ALs, and a small subset of de
novo AML and ALL.16,17 Distinguishing features of
ALL1 alterations include the striking heterogeneity of
its recombinations, i.e. more than 30 chromosome
partners have been described in ALL1 rearrange-
ments, and the lack of association of these lesions
with a definite lineage.18,19

In this article, we review the biological and struc-
tural properties of the ALL1 gene and its various fus-
ing proteins. In addition, we discuss the clinical rele-
vance of these lesions with special emphasis on their
role in molecular diagnosis and monitoring of mini-
mal residual disease (MRD).

Cloning and structure of the ALL1 gene
Using somatic cell-hybrids or fluorescent in situ

hybridization (FISH), the chromosome 11q23 break-
points were mapped into a region between the CD3g
and porphobilinogen deaminase genes. Subsequent-
ly, a yeast artificial chromosome (YAC) containing the
CD3d and CD3g genes was cloned and shown by FISH
analysis to span the t(4;11), t(6;11), t(9;11) and
t(11;19) chromosome translocation breakpoints (13).
From a similar YAC, we obtained a DNA insert, which
by Southern blot analysis detected rearranged bands in
leukemic cells from patients with the t(1;11), t(4;11),
t(6;11), t(9;11), t(10;11), or del(11q23), and we
showed that breakpoints clustered in a small region of

> 8 kb named by us ALL1.11 This gene spans approxi-
mately 90 kb of DNA in length and consists of 36
exons, ranging in size from 65 bp to 4249 bp.20,21 ALL1
codifies for a major transcript of > 15 kb. This latter
encodes a protein of more than 3910 amino acids con-
taining three regions homologous to sequences of the
Drosophila trithorax gene, including cysteine-rich regions
that can fold into six zinc finger-like domains. The
trithorax gene in Drosophila acts to spatially maintain
restricted expression patterns of Antennapoedia and
Bithorax complexes during fruit fly development. Tritho-
rax activates transcription of multiple genes of the two
complexes and as such, counteracts the activity of poly-
comb group genes, which repress the transcription of
the same genes.22-24 Based on what is known about the
Drosophila homologous gene, very likely, ALL1 repre-
sents a transcription factor involved in the regulation
of genes controlling human development and/or dif-
ferentiation. In this respect, it is noteworthy that, at
first, ALL1 sequences were isolated from a human fetal
cDNA library, suggesting that this gene is highly
expressed during fetal development.12 Furthermore, the
ALL1 gene product possesses two other regions which
would be directly or indirectly involved in the control
of gene transcription. These are: 1) a region similar to
the AT hook of highly-mobility-group-I, that binds to
AT-rich regions of the minor groove of the DNA; and
2) a cysteine-rich region (CRR) homologous to the
mammalian DNA methyltransferase double helix,
which, favoring conformational DNA changes, facili-
tates the action of other regulatory genes14 (Figure 1).

ALL1-partner genes in 11q23 
translocations

To date, twelve ALL1 partner genes have been char-
acterized which are involved in the following translo-
cations: t(4;11), t(9;11), t(6;11), t(11;19), t(1;11),
t(10;11), t(11;16), t(11;17) and t(X;11).28-32,65

The impressive heterogeneity of ALL1 recombina-
tions raises two important questions. Firstly, which of
the two hybrid genes originated by translocations
have more relevant oncogenic properties? Secondly,
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Figure 1. Schematic representation of the proteins
encoded by the ALL1 gene.



do the partner genes play an active role either in
determining the leukemic phenotype or in activating
the ALL1 gene?

As concerns the former issue, several lines of evidence
suggest that the chimeric gene is transcribed from the
derivative 11 containing at the 5' side the ALL1 portion
and at the 3' side the partner gene sequences. In fact,
in cases with complex translocations involving the
11q23 cytogenetic band, the junction leading to the
fusion of the ALL1 exons encoding the NH2 portion of
the ALL1 is formed, whereas the distal part of 11q is
translocated onto another chromosome.33-35 Similarly,
the 5' portion of the reciprocal gene can be juxtaposed
to a gene other than ALL1, as recently reported for the
AF10 at 10p12 band in a AL case with an invins(10;11)
(pl2;q23,q12) in which the 5' portion of the AF10 was
fused to a gene named HEAB at the 11q12.36 Further-
more, the ALL1 portion telomeric to the breakpoint
site is deleted in about 20-30% of cases with 11q23
abnormalities.17,30,36,37 Finally, in ALL cases with the
t(4;11) the ALL1/AF4 transcript is present whereas the
reciprocal AF4/ALL1 chimeric mRNA is inconsistently
detected.38

To date, no significant associations have been found
between the leukemic phenotype and the most com-
mon ALL1 chimeric genes except for the ALL1/CBP,
recently identified in the t(11;16)(q23;pl3), which is
strictly linked with therapy-related myelodysplastic
syndrome.33

To answer the question whether genes fused to
ALL1 provide functionally common domains, or sim-
ply supply initiation or termination signals for trans-
lation of the disrupted ALL1 coding region, several
investigators have searched structural similarities
among the different ALL1 partner genes. As shown in
Table 1, with the exception of AF9 with ENL, of AF10

with AF17, and of AFX with AF6q21, sequence analy-
sis did not reveal structural or functional similarities
among the different ALL1 partner genes. Thus, it is
unlikely that these genes could play a role in the func-
tion of the chimeric ALL1 partner products by simply
providing transcriptional modulation (activation or
repression) domains. By contrast, it has been sug-
gested that they might supply dimerization domains,
which could activate the ALL1 chimeric genes. This
hypothesis is supported by the following observa-
tions: 1) epsl5 and AF6 are cytoplasmic proteins
showing structural similarities with the rod-like region
of various myosin chains, which in turn are involved
in protein-protein interactions; 2) AF17 and AF10
contain the dimerizating leucine zipper motifs, com-
monly regarded as structures controlling protein-pro-
tein interactions; 3) a newly described genetic mech-
anism, named self-fusion, leads to the tandem dupli-
cation of an internal fragment of the ALL1 gene orig-
inating as an abnormal protein, which could be func-
tionally equivalent to a dimer of the NH2 portion of
the ALL1.39

To date, the physiological functions of both the
wild type ALL1 and its chimeric products are still
unknown. To study the role of this gene in hemato-
poiesis, Hess et al. have recently examined the effects
of the haplo-insufficience or absence of ALL1 gene on
the in vitro differentiation of yolk salk progenitor cells,
showing that ALL1 is required for generation of nor-
mal numbers of hematopoietic progenitors and their
proper differentiation, especially along the granulo-
cyte and macrophage lineages.40 Furthermore, anti-
ALL1 polyclonal antibodies showed that proteins
translated by ALL1 chimeric genes are localized exclu-
sively to the nucleus with bodies smaller and more
numerous than those usually detected in normal
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Table 1. Structural characteristics, location and putative functions of ALL1 partner genes together with their shared homologies.

Nomenclature Location Transcript Protein Putative function Shared homologies References
(kb) (aa) (No.)

AF4 or FEL 4q21 12 & 15 1200 Transcription factor No (25,26)

AF9 9p22 5 578 Transcription factor ENL (25)

ENL 19p13 4.7 559 Transcription factor AF9 (14,61)

AF6 6q27 8 1612 Cytoplasmic prot. No (27)

AF1p 1p32 4.4 896 Cytoplasmic prot. No (32)

AF10 10p12 5.5 1027 Cytoplasmic prot. AF17 (34)

AF17 17q21 7.5 & 5 1093 Dimerization prot. AF10 (29)

ELL 19p13.1 4.4 621 Transcription factor No (28)

AF1q 1q21 1.7 90 Growth factor No (31)

AFX1 Xq13 Not determined Not determined Transcription factor AF6q21 (30)

CBP 16p13 9 2491 Transcriptional coactivator No (33)

AF6q21 6q21 6 403 Transcrition factor AFX (65)
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cells, while the wild type ALL1 protein is localized to
both the cytoplasm and nucleus. This observation
suggests that ALL1 chimeric proteins are activated by
delocalization within the cell.41

The leukemogenic activity of the ALL1 fusion gene
has been recently demonstrated in a study that
showed the development of AML in a mouse carry-
ing the ALL1/AF9 abnormality.42

Putative mechanisms for origin of ALL1
recombinations

A critical unsolved question in AL pathogenesis
concerns mechanisms undergoing illegitimate recom-
bination events leading to translocations. In this
respect it is interesting to note that several DNA
motifs implicated in DNA recombination machinery
have recently been identifìed within the ALL1 bcr.
These include: 1) recombinase signal sequences (hep-
tamers and nonamers); 2) scaffold attachment
regions (SARs); 3) high affinity topo-II consensus
binding sites, including a strong site in exon 9, and 4)
Alu-sequences.43-45 By comparing ALL1 rearrange-
ments in de novo versus TR AL, Strissel-Broeker et al.
have reported statistically significant differences in
breakpoint distribution between the two groups. In
particular, they found that in TR AL, breakpoints
clustered in the telomeric portion of the ALL1 bcr,
characterized by the presence of SARs and high affin-
ity topo II binding sites. By contrast, de novo AL most
frequently showed breakpoints in the centromeric or
5' bcr portion, which is high prone to recombino-
genic events for the presence of a high number of Alu
sequences. Based on these observations, the authors
suggest that translocations mechanisms in de novo
and TR AL might be different.43 This conclusion also
has important implications to explain the etiology
and pathogeneis of ALL1+ve AL occurring during ear-
ly infancy. Since molecular analyses showed that in
these ALs ALL1 alterations arise during pregnancies,46

it has been suggested that critical event(s) in utero
might involve exposure to topo II inhibitors, and sev-
eral such natural and medicinal substances are avail-
able as candidate agents.48-50 To test this hypothesis,
we recently compared ALL1 gene breakpoint distrib-
ution in a large group of infant leukemias (26 pts)
with those of de novo childhood or adult AL (29 pts)
and TR AL (5 pts). We found that, compared to de
novo AL, infant ALs showed the same biased distrib-
ution of ALL1 gene breaks as topoisomerase II-relat-
ed secondary AL.51 These data lend further credence
to the hypothesis that exposure to topo II inhibiting
chemicals in pregnancy may be causally related to
infant AL pathogenesis.

ALL1 gene alterations in acute leukemias
As we have seen, it is generally assumed that differ-

ent genetic lesions underlie the phenotypic variability
observed in acute leukemia subtypes. By contrast, ALs
with ALL1 abnormalities are not associated with a

definite lineage. A paradigmatic example of the lin-
eage promiscuity observed in ALL1 rearranged malig-
nancies is represented by the subset of infant AL. This
is a distinct AL entity with consistent biological and
clinical features and with an extremely poor response
to treatment and survival. Furthermore, 60-70% of
these patients present an alteration of ALL1 gene.
Leukemic cells frequently reveal myelomonocytic or
monocytic (FAB M4-M5) features within myeloid
types, and CD19+/CD10– markers within lymphoid
cases. In addition, hybrid B lymphoid/myelomono-
cytic phenotypes are frequently observed either simul-
taneously or as a consequence of lineage switch dur-
ing disease evolution.52-56

Similar findings can be observed in the small sub-
set of childhood and adults with de novo ALL1+ve ALs.
In fact, in this last group of patients, ALL1 gene is
altered in 50% of pre-pre B ALL,57 in 25-30% of AML
classified as FAB M4/M5,58,59 and in 10% of M0-M1
AML.60 Furthermore, as observed in infant ALs,
myeloid and lymphoid markers may be present on
leukemic blasts either simultaneously or as a conse-
quence of lineage switch at relapse. All together, these
observations suggest that ALL1 rearranged leukemias
originate from an early hemopoietic precursor with
bipotential lymphoid-monocytic differentiation capa-
bility. This hypothesis is furtherly supported by in vit-
ro evidence that lymphoid cell lines bearing 11q23
abnormalities may acquire monocytic features after
stimulation in culture.61 Finally, the demonstration
of identical ALL1 rearranged bands on DNA samples
from lymphoid and monocytic leukemic blasts in
patients who presented a lineage switch at relapse,
provides compelling evidence that the phenotypical-
ly different leukemic cells arise from the same hemo-
poietic precursor (Figure 2).

Figure 2. ALL1 genic configuration in a 65-year-old female
patient with ALL who presented at relapse a lineage switch
to monoblastic features. DNA samples, digested to com-
pletion with Bgl II (lanes 1 and 3) and Bam HI (lanes 2 and
4), showed identical ALL1 rearranged bands (arrows) at
diagnosis (lanes 1 and 2) and at relapse (lanes 3 and 4).



G. Cimino et al.354

Diagnostic and prognostic relevance of
ALL1 alterations in acute leukemias

The availability of this marker provides a new mol-
ecular tool for diagnostic and characterization of
ALs. Because of the great number of partner genes
and of diverse genetic mechanisms leading to ALL1
interruptions, Southern blot analysis is today’s gold
standard in studying ALL1 gene abnormalities. In
fact, FISH analysis is uninformative in cases with
ALL1 self-fusion or in cases with interstitial genetic
insertion into the ALL1, as recently described for AF6
and AF10. However, cytogenetic and/or FISH are cru-
cial techniques for the identification of ALL1 partner
genes.

ALL1 breakpoints cluster in a small region of 8.3 kb
encompassed by two Bam HI sites, explored by the
B859 cDNA insert, which includes ALL1 exons 5-11
sequences (Figure 3).12 Recently, reviewing Southern
blot data achieved in 70 AL patients with ALL1 alter-
ations, we found abnormal restriction fragments in
98%, 85%, 79% and 40% of DNA samples digested
with Bam HI, Hind III, Bgl II and Xba I endonucleas-
es, respectively. In this series, two DNA samples
showed ALL1 rearrangements when digested with Bgl
II endonuclease only. Thus, we recommend that, for
routine analysis of ALL1 rearrangements, DNA sam-
ples should be digested with Bam HI and Bgl II
restriction enzymes and hybridized with the B859
cDNA probe.

To date, the prognostic value of ALL1 rearrangements
in ALs has been clearly demonstrated in infant ALs only.
Following preliminary observations in a limited series of
cases in which an altered ALL1 gene configuration was
associated to unfavorable clinical characteristics such
as age < 6 months, hyperleukocytosis, organomegaly,
hybrid phenotype, etc.,52 several studies on large series
of infant patients have demonstrated the prognostic
value of ALL1 configuration.53-56 In particular, in a
group of 45 infant AL aged between 0 and 18 months,
we reported an actuarial event free survival of 57% and
9% for those patients with germline or rearranged ALL1
configuration, respectively (p < 0.001). In this study, a
multivariate analysis with a model including age, sex,

WBC count, FAB classification and ALL1 status con-
firmed the independent value of this molecular alter-
ation as a prognostic factor. These results on 11q23/
ALL1 rearrangements were furthermore confirmed by
Pui et al. in a series of 30 infants with ALL.55

In our opinion, two main considerations can be
drawn from these results: 1) they are one of the first
examples about the possibility to molecularly stratify
ALs for prognosis; 2) they distinguish different risk cat-
egories within the apparently homogenous group of
infant AL, a disease subset overall considered as bear-
ing unfavorable outcome. Based on these observa-
tions, it is advisable that ALL1 gene status be taken
into account to choose the most adequate, risk-
adapted therapeutic strategy in this subset. Thus,
extremely aggressive therapy should be considered for
infants with ALL1 rearrangements, while the risk of
very aggressive protocols, frequently associated with
life-threatening and/or permanent complications,
could be spared for those infants with a potentially
curable disease for having a germline ALL1 configu-
ration.

Concerning the group of childhood and adult de
novo ALL1+ve AL, two retrospective studies on AML
failed to demonstrate significant prognostic differ-
ences between patients with or without ALL1 alter-
ations.58-59 However, the above discussed data on
infant AL and cytogenetic studies on adult patients
with AL strongly indicate that ALL1 prognostic value
should be examined in prospective studies involving
large numbers of patients homogeneously treated.

Molecular monitoring of minimal residual
disease

The cloning of several ALL1 partner genes has
allowed the development of reverse transcriptase poly-
merase chain reaction (RT-PCR) strategies to specifi-
cally amplify the different fusion products for rapid
diagnosis of translocations and sensitive monitoring of
MRD.62-63 With respect to t(4;11) ALL, the ALL1/AF4
was amplified in diagnostic samples of all patients car-
rying a cytogenetically detectable t(4;11), whereas
patients in long-term complete remission (CR) were

Figure 3. Partial restriction map of the ALL1 gene break-
point cluster region. The B859 probe is a cDNA fragment
containing ALL1 exons 5-11 sequences. B = Bam HI; Bg =
Bgl II, EV = Eco RV; X = Xba I; H = Hind III.



found PCR negative.63,64 In a recent study, we used a
RT-PCR based strategy to evaluate the presence of
MRD in 12 patients with ALL1/AF4 positive ALL (7
infants and 5 adults). Eleven patients were treated
with high-dose intensive induction and consolidation
chemotherapy, without bone marrow transplantation,
while the remaining case received a less intensive pro-
tocol because of her poor performance status. The
sequential monitoring of the ALL1/AF4 hybrid tran-
scripts showed that the 5 long-term survivors in con-
tinuous complete remission for a median time of 40
months (range 28-60 months) tested persistently PCR
negative. By contrast, ALL1/AF4 products were per-
sistently found in the remaining seven patients, includ-
ing the four cases in complete hematological remission
who later relapsed.64 These data were subsequently
confirmed by the molecular monitoring of 3 additional
cases with t(4;11) ALL (1 infant and 2 adults). A per-
sisting molecular and hematological CR was observed
in the infant case at 7+ months after induction of
treatment, while the remaining two cases tested per-
sistently PCR positive. These two patients relapsed
within 12 months from hematological CR, and fur-
thermore consolidated in one patient with an allo-
geneic BMT. Figure 4 graphically depicts PCR moni-
toring of MRD in the entire group of 15 patients. 

These data provide convincing evidence that PCR
positive tests during clinical CR are predictive of dis-
ease evolution and anticipate the occurrence of
hematological relapse. The clinical value of PCR
monitoring is also strengthened by results observed

in long-term survivors that tested persistently PCR
negative and remained in CCR. These observations
also suggest that ALL1/AF4 positive ALL, at least in
some instances, is a potentially curable leukemia, and
that a repeatedly PCR negative status could be con-
sidered the optimal therapeutical goal, while inten-
sive consolidation programs including BMT should
be considered for those patients who did not achieve
a molecular remission after initial treatment. Should
these findings be confirmed in larger prospective
studies, the PCR methods would be of utmost impor-
tance towards designing individual post-remission
consolidation therapies.

Future perspectives
Studies on the ALL1 gene have provided important

new information on the molecular mechanisms
involved in leukemogenesis. Moreover, novel tumor-
specific markers are now available for identifying pre-
viously unknown genetic subsets within the het-
erogenous spectrum of AL. This should allow a bet-
ter definition of prognostic AL groups and monitor-
ing of MRD with the aim to define tailored induction
and consolidation therapeutical programs.
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Figure 4. Longitudinal monitoring of residual disease by RT-PCR analysis of the ALL1/AF4 transcripts. Time 0 corresponds at
diagnosis; R = hematological relapse; D = dead.

months
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