A case of microcytic anemia

ROSANGELA INVERNIZZI, FRANCO LOCATELLI

Dipartimento di Medicina Interna, Sezione di Medicina Interna ed Oncologia Medica e Dipartimento di Pediatria, Università di Pavia, IRCCS Policlinico S. Matteo, Pavia, Italy

A 15-month-old male infant was admitted because of anemia lasting for a few months and delayed weight gain. There was no family history of anemia.

At admission, the patient was pale but showed no other pathological findings.

Hematological data were: Hb 8.6 g/dL, red cell count 4.86×10^{12} /L, Hct 28%, MCV 57.6 fL, MCH 17.7 pg, MCHC 30.7 g/dL, reticulocytes 194×10^{9} /L, white cell count 18.9×10^{9} /L with a normal differential count, platelet count 734×10^{9} /L. A peripheral smear showed moderate anisopoikilocytosis with hypochromic microcytes, some target cells, schistocytes and ovalocytes and an occasional dimorphic picture.

Serum iron concentration was 61 μ g/dL, total iron binding capacity 280 μ g/dL, and ferritin level 202 μ g/L. Hemoglobin electrophoresis was normal and α -thalassemia syndrome was excluded through appropriate investigation.¹⁻⁵

Bone marrow aspirate displayed normocellular marrow with a polymorphic picture; erythroid hyperplasia was evident: erythoblasts were small with abnormal condensation of nuclear chromatin, cytoplasm was often vacuolized or incompletely

Correspondence: Rosangela Invernizzi, Dipartimento di Medicina Interna, Sezione di Medicina Interna ed Oncologia Medica, IRCCS Policlinico S. Matteo, 27100 Pavia, Italy.

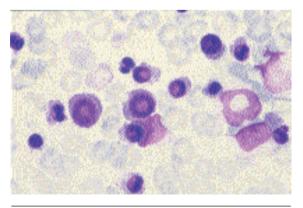


Figure 1. Bone marrow (MGG, \times 1200). Prominent erythroid hyperplasia, with predominance of small late dystrophic erythroblasts.

hemoglobinized and ragged with ill-defined edges, occasional Pappenheimer bodies were observed. Granulocytic and megakaryocytic series were normal (Figure 1).

Perls's reaction showed increased iron stores; more than 70% of the erythroblasts were ring sideroblasts (Figure 2). Cytogenetic analysis revealed a normal male karyotype. Therefore congenital sideroblastic anemia was diagnosed.

References

- 1. Camaschella C, Cappellini MD. Thalassemia intermedia. Haematologica 1995; 80:58-68.
- Foglietta E, Deidda G, Graziani B, Modiano G, Bainco I. Detection of α-globin gene disorders by a simple PCR methodology. Haematologica 1996; 81:387-96.
- Bianco I, Cappabianca MP, Foglietta E, et al. Silent thalassemias: genotypes and phenotypes. Haematologica 1997; 82:269-80.
- Sivera P, Roetto A, Mazza U, Camaschella C. reliability of molecular diagnosis of α-thalassemia in the evaluation of microcytosis. Haematologica 1997; 82:592-3.
- Bianco I, Lerone M, Foglietta E, et al. Phenotypes of individual with a β thal classical allele associated either with a β thal silent allele or with a globin α gene triplication. Haematologica 1997; 82:513-25.

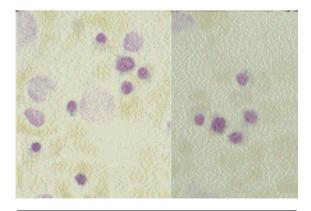


Figure 2. Bone marrow (Perls's reaction, \times 1200). Most late erythroid precursors are ring sideroblasts.