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Making fish a little more human: a zebrafish hematopoietic xenotransplant model is improved by
the expression of human cytokines
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For decades the mouse xenotransplant model has
allowed us to track the behavior of transplanted human
cells. Whether it is transplantation of hematopoietic

stem and progenitor cells (HSPC) or leukemic cells, immun-
odeficient mice provide a means of measuring homing,
engraftment, and stem cell dynamics.1-3 However, there are
limitations to these mouse models that have made it difficult
to advance certain aspects of HSPC and leukemia research.
For example, immunodeficient mouse models such as NSG
(NOD-scid IL2Rγnull)4 are expensive to maintain, making them
prohibitive to scaling for screening purposes. Direct intravi-
tal imaging can be performed on mouse transplant models,5,6

but because of its technical challenges, this technique is not
suitable for use in a large number of animals. To tackle the
diversity of human HSPC and leukemias, there is a need for
a model that can be housed at high density, easily treated
with therapeutics, and directly imaged if necessary. The
zebrafish has become well-established as an alternate model
that can satisfy these additional research needs.7

Although there are immunodeficient adult zebrafish mod-
els available,8 working with embryos [0-3 days post-fertiliza-
tion (dpf)] and larvae (3-30 dpf) has its own advantages. The
zebrafish does not fully develop adaptive immunity until
juvenile stage (>30 dpf), making it ideal as a xenotransplant
model. Also, the smaller and more transparent embryos are
particularly amenable to live imaging. As one adult female
can spawn up to 200 embryos per week, and larvae can be
maintained at high density, it is a truly scalable model. It is
easy to deliver cells into the circulation by microinjection. If
injected cells are fluorescent, made so by either genetic mod-
ification or dye label, they can be immediately tracked from
the injection site as they home to and interact with the
niche. One caveat of this model is that the ideal temperature
for maintenance of zebrafish is 28.5°C, so a compromise
temperature of 35°C must be used in xenotransplants,9

allowing mammalian cells to be compatible with the host
environment. Even with these advantages, there has still
been room for optimization of the zebrafish as a recipient
for human HSPC and leukemic cells.
The hematopoietic ontogeny, genetic programs, and cell lin-

eages are highly conserved among vertebrates, making results
from zebrafish translate exceptionally well to humans.10,11

However, the cytokines that are essential as regulators of
hematopoiesis are not well conserved.12 This led researchers to
“humanize” mouse models by introducing human cytokines,
either by injection or transgenesis.13,14 Following this approach,
but with the added advantages of the zebrafish model,
Berman’s group developed a humanized zebrafish that
expresses factors critical for support of human HSPC and
leukemia cells.15 To develop this model, they selected the
human cytokines GM-CSF, SCF/KITLG, and SDF1-α/CXCL12
(named “GSS”) as top candidates to support human cells in the
zebrafish model. They expressed these factors in vivo by gen-

erating a triple transgenic zebrafish line to support transplant-
ed human hematopoietic cells. Human CXCL12 is driven by
the zebrafish cxcl12 promoter, and GM-CSF and SCF were
doxycycline inducible. Strikingly, expression of all three
cytokines had the effect of promoting human cell survival and
differentiation.
Previous work has been done in Berman’s laboratory to

develop zebrafish leukemia xenotransplant models.9,16 Other
groups have successfully transplanted adult human CD34+

HSPC17 and mouse HSPC18 into zebrafish larvae. Interestingly,
these human cells were found to trigger similar cellular behav-
iors in the niche as were seen during endogenous zebrafish
HSPC lodgement,19 highlighting the similarity between mam-
malian and zebrafish HSPC.
To evaluate their new GSS model over previously developed

models, they applied a number of metrics to test its function:
(i) migration; (ii) proliferation; (iii) chemotherapy response; (iv)
clonality; and (v) host survival. Ultimately, their goal was to
make a better microenvironment for human HSPC and
leukemic cells. First, to test migration, they injected Jurkat
human T-acute lymphoblastic leukemia cells into the yolk of
single SDF1-α/CXCL12-overexpressing larvae (S fish) because
this cell line expresses high levels of CXCR4. There was little
initial response and they reasoned that the injection site was
not optimal (yolk and not circulation), and SDF1-α/CXCL12
expression levels of the transgenics were low. To compensate
they irradiated recipient larvae and were able to induce a
migratory response of transplanted cells in SDF1-α/CXCL12-
expressing transgenics.
Next, to test proliferation, they transplanted a human Down

syndrome acute myeloid leukemia (AML) cell line (CMK) into
transgenic larvae carrying the doxycycline-inducible GM-
CSF/CSF2 and SCF/KITLG transgenes (GS fish). Expression of
these human factors in the zebrafish larvae proved effective, as
CMK cells were more proliferative 3 days post-injection (dpi).
However, as in the experiment above, xenotransplanted cells
were injected into the yolk, which can have the effect of trap-
ping the cells and reducing their access to circulation.
Following these results, the authors proceeded to perform all
injections directly into the circulation.
The authors then combined transgenics to establish the

triple transgenic GM-CSF, SCF/KITLG, and SDF1-α/CXCL12
(GSS) line. As proof-of-concept for drug screening, the authors
first chose the chemotherapy medication cytarabine. The
CMK cell line they used was derived from a 10-year old Down
syndrome patient with AML who was responsive to this drug.
Zebrafish embryos and larvae are well-suited for medium-
throughput drug screening because the entire organism can be
soaked in drug. These treatments produce an in vivo phenotyp-
ic read-out of drug effects. Interestingly, the drug was only
effective on xenografts in the GSS line but not in control fish.
This response was not fully explained in the study; however,
the increased proliferation of leukemic cells from GSS
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cytokines may have made their reduction by chemothera-
py treatment more obvious. Alternatively, the GSS
cytokines may directly affect the CMK cells, allowing them
to have a more physiological response to the drug.
Following the promising treatment of CMK xenograft lar-

vae with cytarabine, the authors injected four different pri-
mary AML cells into the triple GSS fish at 3 dpf.
Consistently, AML cells in GSS fish reduced survival of the
host, presumably because cells were able proliferate more
in the presence of human cytokines. Diminished survival at
3 dpi was not simply because of the xenotransplant proce-
dure, as introduction of human HSPC into the circulation of
zebrafish larvae did not decrease survival. Another measure
of these xenografts was clonality, which was determined
by error-corrected RNA sequencing. Twice as many indi-
vidual clones from heterogenous human AML were pre-
served in the GSS model compared to controls.
Together, the above experiments demonstrated that

expression of human pro-hematopoietic cytokines in the
GSS transgenic model provided a superior microenviron-
ment for xenografts of human HSPC and leukemic cells.
This was assessed by increased human cell migration with
human CXCL12, increased proliferation with GM-
CSF/CSF2 and SCF/KITLG, decreased survival of the
recipient, better response to chemotherapy, and increased
clonality of xenotransplant cells. Despite the many advan-
tages of the zebrafish, there are still some limitations. For
example, xenograft human cells only survive for a few
days at most. This prevents the long-term tracking of
human cell engraftment and disease progression in the
host that is possible in mammalian transplant models,
such as the mouse1-3 or non-human primate.20 Overall this
novel xenotransplant model has many potential applica-
tions, from live imaging of leukemia interaction with the
niche, to the rapid optimization of patient-specific
chemotherapy. 
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