Clinical phenotype of adult-onset systemic histiocytosis harboring BRAF in-frame deletions

by Matthias Papo, Jérôme Razanamahéry, Malik Da Silva, Zofia Hélías-Rodzewicz, Vsevolod Potapenko, Suzanna Bota, Vanessa Leguy-Seguin, Stéphane Dominique, Raphaël Lhote, Quentin Moyon, Dov Taïeb, Tom Abrassart, Marion Campana, Visal Keo, Etienne Rivière, Olivier Lucidarme, Fleur Cohen-Aubart, Zahir Amoura, Julien Haroche, and Jean-François Emile

Received: March 4, 2024.
Accepted: May 15, 2024.

Citation: Matthias Papo, Jérôme Razanamahéry, Malik Da Silva, Zofia Hélías-Rodzewicz, Vsevolod Potapenko, Suzanna Bota, Vanessa Leguy-Seguin, Stéphane Dominique, Raphaël Lhote, Quentin Moyon, Dov Taïeb, Tom Abrassart, Marion Campana, Visal Keo, Etienne Rivière, Olivier Lucidarme, Fleur Cohen-Aubart, Zahir Amoura, Julien Haroche, and Jean-François Emile. Clinical phenotype of adult-onset systemic histiocytosis harboring BRAF in-frame deletions. Haematologica. 2024 May 23. doi: 10.3324/haematol.2024.285273 [Epub ahead of print]

Publisher’s Disclaimer.

E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication.

E-publishing of this PDF file has been approved by the authors.

After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors’ final approval; the final version of the manuscript will then appear in a regular issue of the journal.

All legal disclaimers that apply to the journal also pertain to this production process.
Clinical phenotype of adult-onset systemic histiocytosis harboring \textit{BRAF} in-frame deletions

Matthias Papo1, Jérôme Razanamahéry2, Malik Da Silva3, Zofia Hélias-Rodzewicz3, Vsevolod Potapenko4, Suzanna Bota5, Vanessa Leguy-Seguin2, Stéphane Dominique5, Raphaël Lhote1, Quentin Moyon1, Dov Taïeb1, Tom Abrassart1, Marion Campana6, Visal Keo7, Etienne Rivière8, Olivier Lucidarme9, Fleur Cohen-Aubart1, Zahir Amoura1, Julien Haroche1, Jean-François Emile3

1Internal Medicine Department 2, French National Referral Center for Rare Systemic Diseases and Histiocytoses, Sorbonne University, Assistance Publique–Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, France
2Department of Internal Medicine and Clinical Immunology, Dijon University Hospital, Dijon, France
3Paris-Saclay University, Versailles SQY University, Assistance Publique-Hôpitaux de Paris, Ambroise-Paré Hospital, Smart Imaging, Service de Pathologie, Boulogne, France
4Municipal educational hospital №31, Saint-Petersburg, Russia
5Department of Pneumology, CHU ROUEN, F-76000 ROUEN, France
6Pneumology Department, Source hospital, Orléans, France
7Internal medicine departement, Bayonne hospital, Bayonne France
8Department of internal Medicine and Infectious Diseases Department, Haut Leveque Hospital, University Hospital Centre of Bordeaux, F33604 Pessac, France
9APHP Sorbonne Universités Pitié-Salpêtrière Hospital and UMR 7371, UMR_S 1146, Laboratoire d'Imagerie Biomédicale, F-75013, Paris, France.

\textbf{Corresponding author:} Dr Matthias Papo, Service de Médecine Interne 2, Institut E3M, Hôpital Pitié Salpêtrière, 47-83, boulevard de l'Hôpital 75013, Paris, France; matthias.papo@aphp.fr
Running title: Clinical features of *BRAF*del mutated histiocytosis

Key words: Histiocytosis; Cholangitis; Mutations

Funding: nothing to disclose

Competing interests: All authors have nothing to disclose.

Patient consent for publication: Not required.

Patient and Public involvement: This research was done without patient involvement. Patients were not invited to comment on the study design and were not consulted to develop patient relevant outcomes or interpret the results. Patients were not invited to contribute to the writing or editing of this document for readability or accuracy.

Data availability statement: All data relevant to the study are included in the article or uploaded as supplementary information.

Contributors: Study conception and design: MP, JH, JFE. Acquisition of data and experiments performance: MP, JR, MDS, ZHR, VP, SB, VLS, SD, RL, QM, DT, TA, MC, VK, ER, OL, FCA, ZA, JH, JFE. Analysis of data, drafting and writing of the manuscript: MP, JH, JFE. All authors contributed to reviewing the manuscript and approved the final version for publication.
L-group histiocytoses (Erdheim-Chester disease (ECD) and Langerhans-cell histiocytosis (LCH)) are multi-system diseases characterized by histiocytes infiltration in several organs. In these diseases, histiocytes frequently display activating somatic mutations of intracellular signaling pathway protein kinases (mostly the MAPKinase pathway). Many of these mutations seem to be associated with a specific phenotype: \textit{BRAFV600E} mutated ECD patients have more frequently cardiac and retroperitoneal manifestations, \textit{MAP2K1} mutated ECD patients may exhibit overt Rosai-Dorfman Disease (RDD) component, and \textit{ALK}-mutated patients have a high prevalence of neurological manifestations. Therefore, we suspect that each specific mutation or mutation type could be associated with a specific clinical phenotype of histiocytosis. Our objective was to describe characteristics of patients with histiocytosis and in-frame deletion within exon 12 of \textit{BRAF} (\textit{BRAF}^{1β3αC}).

Inclusion criteria were: 1) Diagnosis of histiocytosis confirmed by central review according to most recent published guidelines, 2) presence of \textit{BRAF}^{1β3αC}, and 3) clinical data available. Patients were retrieved from the files of pathology laboratory in Ambroise-Paré Hospital (Boulogne, France). Clinical, biological and morphological data were retrieved, as well as treatment received and follow-up.

DNA was extracted as previously described. Since 2020, DNA extraction has been automated on a Maxwell® RSC Instrument (Promega, France), with extraction performed according to the supplier’s recommendations. For formalin-fixed paraffin-embedded (FFPE) and frozen biological materials, the Maxwell® RSC DNA FFPE Kit and Maxwell® RSC Tissue DNA Kit were used, respectively. The DNA-Seq Next Generation Sequencing (NGS) panel included almost 60 genes covering hot spots or all exons previously reported to be mutated in histiocytoses and genes involved in the MAP-kinase pathway and myeloid...
neoplasia. The sequencing data were analyzed depending on the applied technique. Mutations detected by DNA sequencing were interpreted according to standards and guidelines as previously described9.

We identified patients with $BRAF^{\Delta\beta^3\alpha C}$ and contacted the centers for clinical, morphological, and biological data.

This study was conducted in accordance with the Declaration of Helsinki. Patients provided written informed consent (clinical trial registration NCT04437381 [Molecular Targets for the Treatment of Histiocytosis HISTIO-TARGET]).

In 429 patients with L-group histiocytosis cohort, 189 had a $BRAF^{V600E}$ mutation (46.2%), 25 had a $BRAF^{\Delta\beta^3\alpha C}$ (5.8%) and 9 another $BRAF$ mutation (2.1%). Among patients with $BRAF^{\Delta\beta^3\alpha C}$, data were available for 20 of them. Patients and mutations characteristics are described in Table 1 and Figure 1. Most patients (n=18) had LCH, and two had an ECD, one pure and the other mixed with LCH. Median age at diagnosis was 50.5 years (IQR 34-78). The most frequent manifestations were hepatic (n=9, 45%) and vulvar (8/11 female gender patients, 73%). Other localization were cystic interstitial lung disease (n=7), lytic bone lesions (n=8), classical cutaneous manifestations (n=8), diabetes insipidus (n=8), panhypopituitarism (n=3), pachymeningitis (n=2), long bone osteosclerosis (n=1), perirenal infiltration (n=1), salivary gland infiltration (n=1) and digestive track infiltration (n=1). Among patients with LCH, 2 patients had a single-system pulmonary disease, one patient a single-system liver disease, one patient a single-system multifocal bone disease, and all the others had multi-system manifestations.

Hepatic manifestation was sclerosing cholangitis in all patients, and 5/6 patients had histiocytic infiltration in liver biopsy. All patients with sclerosing cholangitis had biological cholestasis, elevated aminotransferases, and hyperbilirubinemia. No patient had cirrhosis.
Hepatic MRI, when performed, always showed cholangitis (6/6). PET-scan showed liver abnormalities in 4/7 patients (heterogenous liver uptake or uptake in biliary ducts). Six patients had additional mutations in tissue biopsy, including DNMT3A (n=4), TET2 (n=2), ASXL1 (n=1) and PGDFRA (n=1). Among 5 patients who had a bone marrow aspiration, 4 of them had additional mutations, including DNMT3A (n=2), TET2 (n=2), STAG1 (n=1), PPM1D (n=1) and RAD21 (n=1).

First line treatments included vinblastine (n=6), cytarabine (n=1), methotrexate (n=1), cladribine (n=3), lenalimomide (n=1) and cobimetinib (n=1), with various responses depending on the clinical manifestation. Nine patients did not receive any specific treatment for histiocytosis. Four patients with cholangitis received ursodeoxycholic acid without significant improvement. Patients with cholangitis also received vinblastine (n=3 with one disease progression, one stable disease, and one partial remission), cladribine (n=1 with stable disease), cytarabine (n=1 with stable disease) and lenalimomide (n=1 with stable disease). Two patients received cobimetinib, that resulted in partial remission in both patients (PERCIST criteria) at 6 months, while liver function testes and bili-MRI remained stable in one patient (Figure 2). One patient had a liver transplant, with no further relapse. After a median follow-up of 47 (IQR 13-315) months, one patient had died from coronary heart disease.

Clinical manifestations of L-group histiocytosis may vary from single-organ benign disease to multi-organ life-threatening neoplasm. To date, the cause of the variety of clinical manifestations in these diseases is unknown, and the type of mutation involved could play a role in the clinical phenotype.

Our study is the first to describe the clinical phenotype of histiocytosis patients with a BRAF\[^{V600E}\], and showed a high frequency of sclerosing cholangitis and vulvar manifestations,
which are typical LCH manifestations but usually rarely observed. In previous published
cohorts of adults, liver manifestations are described in 10-15% of LCH cases10, and a study
of 14 pediatric patients with LCH and liver involvement showed a 100% prevalence of
\textit{BRAFV600E} mutation11. Vulvar manifestations have only been described in some cases series12. They can present as erythematous plaques, eczema, ulcer or polypoid appearance, which are
non-specific and sometimes it can mimic many other diseases, such as squamous cell
carcinoma, malignant melanoma, herpes or some inflammatory reaction12.

\textit{BRAF\textsuperscript{Δβ\textsubscript{3}-α\textsubscript{C}}} were described in pancreatic, lung, ovarian, thyroid cancers and melanoma13, and
also occur in histiocytoses. These oncogenic deletions are predicted to shorten the β 3/α C-
helix loop, which could favors dimer formation. They are resistant to the BRAF monomer
inhibitors, such as vemurafenib but sensitive in vitro to BRAF dimer inhibitors and MEK
inhibitors14. So far only two patients with histiocytosis harboring \textit{BRAF\textsuperscript{Δβ\textsubscript{3}-α\textsubscript{C}}} have been
reported with targeted therapy, and both had complete remission with either trametinib15 or
cobimetinib16. Two patients of our series were treated with MEK inhibitors, with partial
remission on PERCIST criteria, but no significant improvement in liver function tests and
MRI cholangiopancreatography (Figure 2). Based on the low response rate of standard
chemotherapy in liver locations, those patients may require first line treatment with MEK-
inhibitors.

To conclude, \textit{BRAF}-deletions mutations in histiocytoses seem to be associated with a specific
LCH pattern with high prevalence of hepatic and vulvar involvements. These manifestations
should be carefully screened in these patients. These results also comfort the hypothesis that
each specific mutation in histiocytosis correlates with a specific clinical phenotype.
References

<table>
<thead>
<tr>
<th>Patient</th>
<th>Gender</th>
<th>Age at diagnosis (years)</th>
<th>BRAF mutation</th>
<th>Histiocytosis</th>
<th>Clinical manifestations</th>
<th>Treatment & outcome</th>
<th>Follow-up duration (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>M</td>
<td>78</td>
<td>c.1459_1473del</td>
<td>LCH, ECD</td>
<td>Sclerosing cholangitis, cystic interstitial lung disease, lytic bone lesions</td>
<td>None (Death from coronary heart disease)</td>
<td>14</td>
</tr>
<tr>
<td>#2</td>
<td>M</td>
<td>74</td>
<td>c.1457_1471del</td>
<td>LCH</td>
<td>Sclerosing cholangitis</td>
<td>UDCA (stable disease)</td>
<td>11</td>
</tr>
<tr>
<td>#3</td>
<td>M</td>
<td>66</td>
<td>c.1457_1471del</td>
<td>LCH</td>
<td>Cystic interstitial lung disease</td>
<td>None</td>
<td>29</td>
</tr>
<tr>
<td>#4</td>
<td>F</td>
<td>59</td>
<td>c.1457_1471del</td>
<td>LCH</td>
<td>Vulvar manifestations, cutaneous manifestations, lytic bone lesions, diabetes insipidus</td>
<td>Vinblastine (disease progression), cladribine (disease progression)</td>
<td>98</td>
</tr>
<tr>
<td>#5</td>
<td>F</td>
<td>65</td>
<td>c.1457_1471del</td>
<td>LCH</td>
<td>Sclerosing cholangitis, vulvar manifestations, cutaneous manifestations, diabetes insipidus</td>
<td>Liver Transplantation (remission)</td>
<td>55</td>
</tr>
<tr>
<td>#6</td>
<td>M</td>
<td>56</td>
<td>c.1471_1476del</td>
<td>ECD</td>
<td>Long bone osteosclerosis, pachymeningitis, perirenal infiltration</td>
<td>Cobimetinib (partial remission)</td>
<td>120</td>
</tr>
<tr>
<td>#7</td>
<td>F</td>
<td>61</td>
<td>c.1457_1471del</td>
<td>LCH</td>
<td>Sclerosing cholangitis, vulvar manifestations, lytic bone lesions, diabetes insipidus</td>
<td>UDCA (stable disease), Vinblastine (disease progression), cobimetinib (partial remission)</td>
<td>43</td>
</tr>
<tr>
<td>#8</td>
<td>F</td>
<td>33</td>
<td>c.1457_1471del</td>
<td>LCH</td>
<td>Vulvar manifestations, cutaneous manifestations, cystic interstitial lung disease, lytic bone lesions, diabetes insipidus, panhypopituitarism</td>
<td>Methotrexate (stable disease)</td>
<td>315</td>
</tr>
<tr>
<td>#9</td>
<td>F</td>
<td>56</td>
<td>c.1457_1471del</td>
<td>LCH</td>
<td>Sclerosing cholangitis, cystic interstitial lung disease</td>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td>#10</td>
<td>F</td>
<td>45</td>
<td>c.1457_1471del</td>
<td>LCH</td>
<td>Vulvar manifestations, cutaneous manifestations, lytic bone lesions, diabetes insipidus, pachymeningitis</td>
<td>None</td>
<td>89</td>
</tr>
<tr>
<td>#11</td>
<td>M</td>
<td>41</td>
<td>c.1457_1471del</td>
<td>LCH</td>
<td>Sclerosing cholangitis, cutaneous manifestations, salivary glands infiltration</td>
<td>Cytarabine (skin improvement, cholangitis stability), cladribine (skin improvement, cholangitis stability), lenalidomide (skin improvement, cholangitis stability)</td>
<td>44</td>
</tr>
<tr>
<td>#12</td>
<td>M</td>
<td>34</td>
<td>c.1459_1473del</td>
<td>LCH</td>
<td>Cystic interstitial lung disease</td>
<td>None</td>
<td>3</td>
</tr>
<tr>
<td>#13</td>
<td>F</td>
<td>21</td>
<td>c.1457_1471del</td>
<td>LCH</td>
<td>Vulvar manifestations, cutaneous manifestations, diabetes insipidus, panhypopituitarism</td>
<td>Cladribine (complete remission)</td>
<td>148</td>
</tr>
<tr>
<td>#14</td>
<td>M</td>
<td>23</td>
<td>c.1457_1471del</td>
<td>LCH</td>
<td>Sclerosing cholangitis, digestive tract infiltration</td>
<td>UDCA (stable disease), Vinblastine (partial remission)</td>
<td>62</td>
</tr>
<tr>
<td>#15</td>
<td>M</td>
<td>17</td>
<td>c.1458_1472del</td>
<td>LCH</td>
<td>Lytic bone lesions</td>
<td>None</td>
<td>42</td>
</tr>
<tr>
<td>#16</td>
<td>F</td>
<td>39</td>
<td>c.1458_1472del</td>
<td>LCH</td>
<td>Cystic interstitial lung disease</td>
<td>Vinblastine (partial remission)</td>
<td>2</td>
</tr>
<tr>
<td>#17</td>
<td>F</td>
<td>58</td>
<td>c.1457_1471del</td>
<td>LCH</td>
<td>Vulvar manifestations, panhypopituitarism</td>
<td>None</td>
<td>10</td>
</tr>
<tr>
<td>#18</td>
<td>F</td>
<td>38</td>
<td>c.1457_1471del</td>
<td>LCH</td>
<td>Sclerosing cholangitis, cystic interstitial lung disease</td>
<td>None</td>
<td>50</td>
</tr>
<tr>
<td>#19</td>
<td>F</td>
<td>73</td>
<td>c.1457_1471del</td>
<td>LCH</td>
<td>Sclerosing cholangitis, cystic interstitial lung disease, vulvar manifestations, cutaneous manifestations, diabetes insipidus</td>
<td>UDCA (stable disease), Vinblastine (stable disease)</td>
<td>77</td>
</tr>
<tr>
<td>#20</td>
<td>M</td>
<td>11</td>
<td>c.1457_1471del</td>
<td>LCH</td>
<td>Cystic interstitial lung disease, peri-anal manifestations, diabetes insipidus, lytic bone lesions</td>
<td>Vinblastine (remission and relapse)</td>
<td>146</td>
</tr>
</tbody>
</table>

M: Male; F: Female; LCH: Langherans Cell Histiocytosis; ECD: Erdheim-Chester Disease UDCA: Ursodeoxycholic acid
Figure 1. Proportion of clinical manifestations in patients with histiocytosis and \textit{BRAF} in-frame deletions

Figure 2. Sclerosing cholangitis in Langerhans cell histiocytosis patients with \textit{BRAF} in-frame deletion

A. Intense and diffuse hypermetabolism of the intrahepatic biliary ducts (SUVmax 9.5) on FDG PET-CT before cobimetinib onset. B. Partial regression of intense and diffuse hypermetabolism of the intrahepatic biliary ducts (SUVmax 5.9) on FDG PET-CT six months after cobimetinib onset. C-D. MRI cholangiopancreatography performed at onset (C) and after six months (D) of cobimetinib treatment. The main bile duct (white arrow) is normal, as is the main pancreatic duct ("empty arrow"). Numerous peripheral bile ducts appear multifocally dilated and suspended in the right (empty arrowhead) or left (arrowhead) liver. The successive examinations showed no change in the number, distribution or dilatation of intrahepatic bile ducts. E-F. Large portal tract with destructive infiltration of biliary duct by numerous mononucleated histiocytes (x50) (E) expressing CD1a (F).