Elderly long-term survivors in the Nordic phase II study with first-line maintenance temozolomide for primary central nervous system lymphoma: a 10-year follow-up

by Elisa Jacobsen Pulczynski, Mikkel Runason Simonsen, Outi Kuittinen, Unn-Merete Fagerli, Martin Erlanson, Østein Fluge, Sirpa Leppä, Bjorn Østenstad, Alexander Fosså, Mikael Eriksson, Tarec El-Galaly, Hanne Kuitunen, Karin Papworth, Maria Ljungqvist, Martin B. Pedersen, and Marjukka Pollari

Received: February 1, 2024.
Accepted: March 19, 2024.

Publisher’s Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors’ final approval; the final version of the manuscript will then appear in a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
Elderly long-term survivors in the Nordic phase II study with first-line maintenance temozolomide for primary central nervous system lymphoma: a 10-year follow-up

Authors: Elisa Jacobsen Pulczynski1,2, Mikkel Runason Simonsen3,4, Outi Kuitinen5,6, Unn-Merete Fagerli7,8, Martin Erlanson9, Øystein Fløe10, Sirpa Leppa11,12, Bjørn Østenstad13, Alexander Fossa13,14, Mikael Eriksson15,16, Tarec El-Galaly17, Hanne Kuitunen18, Karin Papworth9, Maria Ljungqvist19,20, Martin B. Pedersen1, Marjukka Pollari11,21

1Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
2Department of Haematology, Region Hospital Goedstrup, Herning, Denmark
3Department of Hematology, Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
4Department of Mathematical Sciences, Aalborg University, Aalborg, Denmark
5Department of Oncology, Kuopio University Hospital Cancer Center, Kuopio, Finland
6Faculty of Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
7Department of Oncology, St Olav University Hospital, Trondheim, Norway
8Department of Clinical and Molecular Medicine, Norwegian University of science and technology (NTNU), Trondheim, Norway
9Department of Radiation Sciences, Umeå University, Umeå, Sweden
10Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
11Research Programs Unit/Applied Tumor Genomics Research Program, University of Helsinki, Helsinki, Finland
12Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
13Department of Oncology, Oslo University Hospital, Oslo, Norway
14KG Jebsen Centre for B-cell Malignancies, University of Oslo, Oslo, Norway
15Department of Oncology, Skane University Hospital, Lund, Sweden
16Medical Oncology, Lund University, Lund, Sweden
17Department of Hematology, Aalborg University Hospital, Aalborg, Denmark
18Cancer Centre, Oulu University Hospital, Oulu, Finland
19Department of Clinical Science and Education, Södersjukhuset, Karolinska Insitutet, Stockholm, Sweden
20Haematology Centre, Karolinska University Hospital, Stockholm, Sweden
21Department of Oncology, Tays Cancer Center, Tampere University Hospital, Tampere, Finland

Disclosures: None

Contributions: EJP was the PI of the study, the national PI in Denmark, responsible for the design of the study, data management, accrual of patients in Denmark, and wrote the manuscript together with MP. MRS performed data analysis. OK was involved in protocol planning, was the national PI in Finland, and responsible for accrual of patients in Finland. UMF was involved in protocol planning, was the national PI in Norway, and responsible for accrual of patients in Norway. ME was involved in protocol planning, was the national PI in Sweden, and responsible for accrual of patients in Sweden. ØF, BØ, and AF recruited and treated patients in Norway. SL recruited and treated patients in Finland. ME recruited and treated patients in Sweden. TEG, HK, KP, ML, and MBP are current members of the Nordic Primary Central Nervous System Lymphoma Group and were involved in writing the manuscript. MP is the chair of the Nordic Primary Central
Nervous System Lymphoma Group, the corresponding author of this study, performed data analysis together with MRS, and wrote, revised as well as reformatted the manuscript together with EJP.

Running heads: Long-term survivors with central nervous system lymphoma

Corresponding author: Marjukka Pollari
marjukka.pollari@pirha.fi

Data-sharing statement: No shared data are available.

Word count: Main Text: 1470

Trial registration: Clinicaltrials.gov identifier: 01458730

Funding: This work was funded by grants from Nordic Cancer Union, Norpharma, Roche, Schering-Plough, and Inge og Jørgen Larsens Mindelegat.
Primary central nervous system lymphoma (PCNSL) is a separate group of lymphomas confined to the central nervous system (CNS) including the eyes. More than 95% of the cases represent aggressive CD20+ diffuse large B-cell lymphoma (DLBCL) with distinct clinical and biological features and poor prognosis.

The outcome of PCNSL is particularly poor among elderly patients, and the improvements achieved in survival during recent decades appear to be restricted to younger PCNSL patients. The main feature of our Nordic phase II PCNSL study was its focus on elderly patients. The treatment for the elderly subgroup in our study consisted of de-escalated induction immunochemotherapy followed by maintenance temozolomide. We have previously reported the 22 months results with 2-year overall survival (OS) rates of 60.7% and 55.6% (p=0.40) and progression-free survival (PFS) rates of 33.1% and 44.4% (p=0.74), among younger and elderly patients, respectively. In our study, we found an astonishing good result for the elderly patients with a median duration of response (DOR) not reached among elderly patients, compared to a median DOR of 10 months among younger patients treated with more intensive immunochemotherapy but without maintenance temozolomide. One of our hypotheses is that the improved results among the elderly subgroup were due to maintenance temozolomide therapy.

In PCNSL, late relapses occur but long-term follow-up data is scarce. Herein, we present long-term outcomes and neurocognitive performance at 10 years after diagnosis in the Nordic phase II first-line PCNSL study.

In this prospective multicenter phase II study, immunocompetent, newly diagnosed, and histologically confirmed PCNSL patients up to 75 years of age at diagnosis were treated with an age-adjusted multi-agent immunochemotherapy regimen. The induction regimen for the younger subgroup (18-65 years at diagnosis) included HD-MTX and HD-cytarabine combined with rituximab, ifosfamide, cyclophosphamide, dexamethasone, intrathecally administered liposomal cytarabine, vindesine, and vincristine. In the de-escalated induction regimen for the elderly subgroup (66-75 years at diagnosis), cyclophosphamide and vincristine were replaced with temozolomide, followed by temozolomide maintenance in patients responding to induction therapy.

For baseline evaluation, response assessment, and statistical design, see original article. All patients were intended to be followed for 120 months after the end of treatment, which in the younger subgroup was the end of induction therapy and, in the elderly subgroup, was the end of maintenance therapy. Patients with refractory disease, progressive disease (PD), and patients not achieving a complete response (CR) at the end of planned therapy went off study and were followed for OS only. OS, PFS, and DOR were estimated using the Kaplan-Meier method. Crude differences between the groups of patients were tested using the log-rank test. Median follow-up was calculated using the reverse Kaplan-Meier method.

The study was approved by the local ethics committees and conducted in agreement with the Declaration of Helsinki and Good Clinical Practice Guidelines.

Sixty-six patients (35 males and 31 females) from 12 centers in Denmark, Norway, Sweden, and Finland were enrolled between May 2007 and October 2010. Baseline characteristics, treatment, responses, and adverse events have been previously reported. The overall response rate was 73.8% for the entire cohort, 69.9% in the younger and 80.8% in the elderly subgroup.

Myelosuppression after HD-cytarabine cycles was the most common grade 3-4 adverse event. After a median follow-up of 10 years, the 10-year OS rate was 29.8% (95% CI: 20.5-43.4%), the 10-year PFS rate was 13.3% (95% CI: 6.6-26.8), and median DOR was 13.2 months (95% CI, 7.7 – 72.4 months) for the entire cohort. Among the younger patients, the 10-year OS rate was 30.4% (95% CI, 18.8% – 49.1%), and the 10-year PFS rate was 8.5% (95% CI: 2.6-27.8%). Likewise, the 10-year
OS rate was 29.6% (95% CI, 16.6%–53.0%), and the 10-year PFS rate was 21.3% (95% CI: 8.6–46.9%), for the elderly patients. Median PFS was 13 months for the entire cohort (range 1.2-162.8 months), 11 months in the younger (range 1.8-168.5 months), and 57 months (range 0-140 months) in the elderly subgroups. Seventeen out of 66 patients (25.8%) were known to be alive at 10 years after diagnosis. Long-term survivors were three younger male patients, eight younger female patients, two elderly male patients, and four elderly female patients. Seven patients had primary refractory disease, six younger patients, and one elderly patient. Early relapses less than one year after the end of treatment were observed in 21 patients. Of these, 13 patients belonged to the younger subgroup. Later relapse occurred in 14 patients, at 15-168 months after the completion of therapy. The number of deaths at the end of the study was 46 (69.7% of the 66 patients enrolled), and three patients were lost to follow-up at around eight years. The cause of death was PCNSL in 25 patients. Four patients (6%) aged 64, 66, 73, and 74 years at diagnosis experienced treatment-related death due to neutropenia and sepsis-induced multi-organ failure, all after the first HD-cytarabine dose. The cause of death was either unknown or not indicated in 14 patients. In the remaining three cases, the cause of death was general deterioration, second malignancy, and neurotoxicity after radiotherapy at relapse.

In the entire study population, ECOG PS, MMSE, and FIM improved or remained unchanged in the majority of the patients with similar results among long-term survivors. For the long-term survivors, patient characteristics, ECOG PS, neurocognition, number, and localization of tumor(s) at diagnosis and relapse are shown in Table 1.

Here, we report the long-term results of the Nordic phase II study on newly diagnosed PCNSL patients treated with a multiagent immunochemotherapy and a de-escalated induction regimen followed by temozolomide maintenance only for elderly patients. In this study, we found a significant proportion of elderly long-term survivors, with a 10-year OS rate of 29.8%. We also report the improvement in both neurocognitive status as well as functional independence of the patients treated in our study.

With the longest follow-up among all published randomized trials in PCNSL, Ferreri et al. has reported a 7-year OS rate of 70% with a median follow-up of 88 months in patients treated in IELSG 32 trial with MATRix followed by consolidation therapy. However, elderly patients (age 66-70 years at diagnosis) were eligible for that trial only if their PS was considerably good (ECOG PS 2 or less) whereas in our study, patients up to the age of 75 years at diagnosis were eligible for the trial also in poor PS (ECOG PS 0-4). Moreover, 44% of the patients in our elderly subgroup were older than 70 years at diagnosis and 26% of the patients had a poor PS (ECOG PS 3-4) leading it impossible to compare the results of these two studies.

The intergroup ANOC-EF-GOELAMS study published by Omuro et al. was the first randomized trial specifically designed for elderly PCNSL patients. In that study, two different HD-MTX-based regimens were studied with one of the regimens containing temozolomide, which was also a part of the regimen for elderly patients in our study. In ANOCEF-GOELAMS, 48 patients were assigned to the MTX-temozolomide arm, with a two-year OS rate of 39% in this group but no long-term follow-up data published. In our study, the two-year OS rate for elderly patients was notably higher, 55.6%.4

Two phase II studies including elderly PCNSL patients have published long-term results with 10-year follow-up data. Seidel et al. reported a Bonn group’s study with a 10-year OS rate of 9% in patients above 60 years of age at diagnosis whereas there were no long-term survivors at 10 years in the other phase II trial MATILDE reported by Ferreri et al. Compared to these results, the long-term survival of elderly patients in our trial is significantly higher. With the median OS of 33.3
months among elderly patients in our study, the results remain more favorable also compared to other studies specifically designed for elderly PCNSL patients (with a median OS ranging from 14 to 17.5 months)7,10-12.

In summary, the Nordic PCNSL study was finalized as planned 10 years after the end of treatment. Seventeen of 66 patients were alive and in good health based on their PS (ECOG PS of 0-1 in most of the long-term survivors), MMSE, and FIM scores (at or close to the maximum level in almost all long-term survivors). We conclude that, in our study, consolidation with maintenance temozolomide has been beneficial regarding survival in vulnerable elderly PCNSL patients. Based on our results, we suggest future clinical trials for elderly PCNSL patients to study novel agents in combination with a HD-MTX-based induction immunochemotherapy regimen without HD-cytarabine, followed by maintenance temozolomide consolidation. Additional, preferably randomized, studies, are warranted to clarify whether consolidation with maintenance therapy could be of benefit to sustain remission and improve survival also in younger PCNSL patients, particularly those that are not fit for dose-intensive consolidation therapy. Having the potential for late relapses and neurotoxicity in mind, we find that all prospective PCNSL clinical trials should routinely report at least 10-year follow-up results in the future.
References

<table>
<thead>
<tr>
<th>Patient number</th>
<th>Age at inclusion</th>
<th>Gender</th>
<th>ECOG PS change during follow-up</th>
<th>MMSE change during follow-up</th>
<th>FIM change during follow-up</th>
<th>Single tumor</th>
<th>Multiple tumors</th>
<th>Deep structures involved</th>
<th>Relapse</th>
<th>Previously involved region at relapse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>52</td>
<td>F</td>
<td>→</td>
<td>↑</td>
<td>→</td>
<td>1</td>
<td>No</td>
<td>No</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>66</td>
<td>F</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>1</td>
<td>Yes</td>
<td>No</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>64</td>
<td>F</td>
<td>↑</td>
<td>→</td>
<td>↑</td>
<td>1</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>58</td>
<td>M</td>
<td>→</td>
<td>↑</td>
<td>→</td>
<td>1</td>
<td>Yes</td>
<td>No</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>64</td>
<td>F</td>
<td>→</td>
<td>→</td>
<td>NA</td>
<td>1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>F</td>
<td>→</td>
<td>↑</td>
<td>→</td>
<td>1</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>52</td>
<td>F</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>1</td>
<td>Yes</td>
<td>No</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>55</td>
<td>F</td>
<td>↑</td>
<td>NA</td>
<td>NA</td>
<td>1</td>
<td>Yes</td>
<td>Yes</td>
<td>NA</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>66</td>
<td>F</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>1</td>
<td>Yes</td>
<td>No</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>68</td>
<td>M</td>
<td>↑</td>
<td>→</td>
<td>↓</td>
<td>1</td>
<td>Yes</td>
<td>No</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>50</td>
<td>F</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>1</td>
<td>No</td>
<td>Yes</td>
<td>NA</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>71</td>
<td>M</td>
<td>→</td>
<td>↑</td>
<td>↑</td>
<td>1</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>50</td>
<td>F</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>1</td>
<td>No</td>
<td>No</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>40</td>
<td>M</td>
<td>→</td>
<td>NA</td>
<td>NA</td>
<td>1</td>
<td>No</td>
<td>Yes</td>
<td>NA</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>69</td>
<td>F</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>1</td>
<td>No</td>
<td>No</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>63</td>
<td>M</td>
<td>NA</td>
<td>↑</td>
<td>↑</td>
<td>1</td>
<td>Yes</td>
<td>No</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>66</td>
<td>M</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>1</td>
<td>Yes</td>
<td>No</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 1. Patient characteristics, ECOG, neurocognitive data, number and localization of the tumor, localization of tumor at relapse for the confirmed long-term survivors. F, Female; M, Male; ECOG PS, Eastern Cooperative Oncology Group performance score; MMSE, Mini-mental state examination; FIM, Functional Independence Measure; →, Unchanged; ↑, Improved; ↓, Declined; NA, non-applicable.
Figure legends

Figure 1. Overall survival (OS), progression-free survival (PFS), and duration of response (DOR) after complete remission (CR). Long-term survival of patients and duration of complete remissions. Demonstrative Kaplan-Meier curves depict A) OS in the entire study population, B) PFS in the entire study population, C) DOR in the entire study population and differences in OS, PFS, and DOR between elderly and younger subgroups (D, E, and F, respectively).