Unfriendly protein of GATA1 and mechanisms of bone marrow failure

by Yigal Dror

Received: March 14, 2024.
Accepted: March 29, 2024.

Citation: Yigal Dror. Unfriendly protein of GATA1 and mechanisms of bone marrow failure. Haematologica. 2024 Apr 11. doi: 10.3324/haematol.2024.285041 [Epub ahead of print]

Publisher’s Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication.
E-publishing of this PDF file has been approved by the authors.
After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in a regular issue of the journal.
All legal disclaimers that apply to the journal also pertain to this production process.
EDITORIAL

Unfriendly protein of GATA1 and mechanisms of bone marrow failure

Yigal Dror¹,²,³

¹Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario; ²Institute of Medical Science, Faculty of Medicine, University of Toronto; and ³Bone Marrow and Myelodysplasia Program, Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Ontario, Canada

Address for Correspondence: Dr. Yigal Dror, Division of Haematology Oncology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada. Phone: (416) 813-5630, Fax: (416) 813-5327, Email: yigal.dror@sickkids.ca

Running title: GATA1, PRMT6 and bone marrow failure
GATA1 is a transcription factor that plays a major role in normal hematopoiesis, but is also associated with bone marrow failure and hematopoietic malignancies. In red blood cells GATA1 expression is peaked at the stage of early proerythroblast stage [1], and activates globin genes and hemoglobin synthase, which are critical for red blood cell differentiation [2]. It has also been shown to protect developing erythroid cells by activation of erythropoietin receptor signaling and transcription of anti-apoptotic genes [3]. During thrombopoiesis, GATA1 is upregulated from the hematopoietic stem cells stage through common myeloid progenitors, megakaryocytes erythroid progenitors, to megakaryocyte [4]. During thrombopoiesis, GATA1 promotes expression of megakaryocyte-associated genes (e.g. GPIBA, GPIBB, PF4, MPL, and NF-E2) and endomitosis [5].

GATA1 belongs to the GATA family of transcription factors. This group of transcription factors is involved in embryogenic development and in various post-embryonic tissue functions. The GATA transcription factors have two highly conserved zinc finger DNA binding domains that recognize and bind specifically to the nucleotide sequence (A/T)GATA(A/G) in regulatory regions of the genes [6]. The GATA1 gene is on the X chromosome and is composed of 5 coding exons. The mRNA translates two alternative isoforms. One is 413 amino acid long that contains an N-terminal transactivation domain and two downstream zinc finger domains (ZF). The second is a short protein that lacks the N-terminal transactivation domain and has low functionality and is unable to support erythropoiesis. GATA1 protein regulates transcription of lineage-specific genes in combination with cofactors such as FOG1 and SCL [1, 7].

The first report of an inherited bone marrow failure syndrome caused by a GATA1 mutation was in 2000 [8]. The patients in this study had thrombocytopenia and anemia with a V205M mutation ins GATA1, which impedes binding to FOG1. Since then, GATA1 was found to be mutated in patients with inherited bone marrow failure syndromes featuring either isolated anemia, or combined anemia and thrombocytopenia or isolated thrombocytopenia. Mutations in the N-terminal transactivation domain that lead to a short GATA1 isoform and protein causes an inherited bone marrow failure syndrome with predominantly anemia with partial or complete Diamond-Blackfan anemia phenotype [9]. In contrast, mutations in the zinc finger domains were reported in inherited bone marrow failure syndromes with either thrombocytopenia or anemia or both. Many inherited GATA1 missense mutations have been identified in the N-terminal zinc finger domain, which impair the ability of GATA1 to bind FOG1 or chromatin and result in disruption of erythropoiesis and megakaryopoiesis. Insertions, deletions and point mutations that delete exon 2 are seen in abnormal myelopoiesis and myeloid leukemia in Down syndrome and are not related to GATA1 associated anemia/thrombocytopenia.

DBA is mostly associated with mutations in ribosome proteins or ribosome related factors. Nevertheless, the association of both, ribosome protein mutations and GATA1 mutations with DBA is not completely surprising since mutations in ribosomal protein have been shown to reduce translation of GATA1 mRNA [10]. It is noteworthy that the phenotype of patients with GATA1-associated DBA is slightly different from that with ribosome protein-associated DBA. GATA1-associated DBA more often present with hypocellular bone marrow, dysplastic erythropoietic cells and dysplastic megakaryocytes, and less often with reticulocytopenia and paucity of erythroid cells [9].
As presented above, substantial knowledge has been accumulated about the mechanism of anemia and thrombocytopenia caused by mutations in the N-terminal domain of \textit{GATA1}. However, little is known about the mechanism of hematopoietic defects in patients with mutations in the C-terminal domain of \textit{GATA1}. Using whole exome sequencing, Lu and colleagues found a novel frameshift and truncation mutation (c.1162delGG, p.Leu387Leufs*62) in the C-terminal domain of \textit{GATA1} in a patient with severe congenital anemia and intermittent thrombocytopenia [11]. To interrogate the mutation effect on hematopoiesis the authors removed the wild type \textit{GATA1} in cell lines and introduced the novel mutation by CRISPR/Cas9, or knocked down \textit{GATA1} by shRNA. Introduction of the mutation decreased transcription of \textit{GATA1}-associated erythroid genes and led to defective differentiation and increase apoptosis of erythroid cells. In addition, the mutation caused a block in megakaryocyte differentiation and reduced expression of platelet function genes. Interestingly, the authors found that PRMT6, a histone modification factor that normally suppresses transcription activity, can bind to N-terminal zinc finger domain as well as the c-terminal domain of the wild type and mutant \textit{GATA1}, though the binding to the mutant Leu387fs \textit{GATA1} was stronger. In the \textit{GATA1} mutant cells the association of PRMT6 with \textit{GATA1} enhanced the binding of PRMT6 to transcriptional regulatory elements of \textit{GATA1}-target genes, and increased the repressive modification H3R2me2a by PRMT6 in these regulatory elements, resulting in reduced transcription of erythroid and megakaryocytic genes. Importantly, treatment of \textit{GATA1} mutant cells with a PRMT6 inhibitor partially rescued transcription and erythroid differentiation.

The work of Lu and colleagues provides novel information about the function of the C-terminal domain of \textit{GATA1}, and the mechanism of disease caused by disruption of this region. This work also shed light on the function of PRMT6 in normal and failed erythropoiesis and megakaryopoiesis.
REFERENCES
Figure 1.

Consequences of the Leu387fs GATA1 mutation on transcription.

A. Increased binding of PRMT6 to the mutant GATA1 compared to the wild type GATA1.

B. Increased repressive histone modification H3R2me2a, caused by PRMT6.

C. Reduced GATA1 binding to erythroid and megakaryocytic differentiation genes in cells with mutant GATA1.

D. Reduced transcription of erythroid and megakaryocyte mRNA in cells with mutant GATA1.
A

B

C

D

Erythroid or megakaryocyte mRNA