The clonal hydra: neoantigen-specific T-cell response in germ cell tumors

by Shefali Mehra and Justin Taylor

Received: January 9, 2024.
Accepted: January 15, 2024.

Publisher's Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors’ final approval; the final version of the manuscript will then appear in a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
The clonal hydra: neoantigen-specific T-cell response in germ cell tumors

Shefali Mehra1, Justin Taylor2*
1Miller Medical School, Miami, FL
2Sylvester Comprehensive Cancer Center, Miami, FL

*Correspondence:
Justin Taylor, MD
1501 NW 10th Avenue
Miami, FL 33136
Jxt1091@miami.edu

Disclosures: The authors declare no conflicts of interest.

Contributions: SM and JT conceived, wrote and edited the manuscript.

Germ Cell Tumors (GCTs) occur in men aged 15-35 years and are the most prevalent malignancies within this demographic. Over the past decade, introduction of platinum-based therapeutics have proven to effectively treat GCTs and improve outcomes1. GCTs, while predominantly occurring in the testes, can be found to originate in the mediastinum, accounting for 10% of all mediastinal neoplasms2. Mediastinal GCTs pose a unique challenge to clinicians due to their propensity for the development of other malignancies. One in every 17 patients with a mediastinal GCT will develop a hematologic malignancy3,4. Apart from hematologic malignancies, sarcomas and carcinomas can develop in patients with mediastinal GCTs. Despite the success of platinum-based regimens in testicular GCTs, primary mediastinal GCTs have proven to be resistant to platinum-based agents, necessitating alternative treatment strategies5. Interestingly, it has been shown that GCTs and hematologic malignancies arising in the same individual share the presence of isochromosome 12p [i(12p)]6,7. Using whole exome sequencing, Taylor and colleagues definitively showed that these malignancies arise from a progenitor that can differentiate into GCTs, sarcomas, or hematologic malignancies8. Despite the improved understanding of their origin, the outcomes for mediastinal GCTs with secondary somatic tumors is around 6 months, making discovery of novel treatments for these patients imperative.

Genoud et al. reports results of a case study consisting of a 22-year-old male with a mediastinal PLAP-positive mixed GCT with CD61+ large cells9. The patient’s bone marrow was infiltrated with CD34-, CD61+, and CD43+ cells with multilobulated nucleus and eosinophilic cytoplasm showing polyploidy, +der(3), and i(12p) on cytogenic analysis. Following a diagnosis of synchronous acute myeloid leukemia (AML) and primary mixed GCT, the patient was initially treated with 3 cycles of cytarabine, mitoxantrone, etoposide, and cisplatin. Intrathecal therapy consisting of methotrexate, cytarabine, and methylprednisone was administered during the second cycle. Additionally, two additional cycles of etoposide and cisplatin were given. The patient achieved complete leukemic remission and metabolic activity of the mediastinal mass was shown to have decreased. Following conditioning, the patient underwent an allogeneic hematopoietic stem cell transplant (HSCT) from a mismatched unrelated donor with CD34+ harvested donor cells. Six months after HSCT, the patient was found to have 60% increased mass of residual and metabolic activity with biopsy showing a fusiform sarcoma with angiomatous differentiation. Ten months after HSCT, the patient was given two donor lymphocyte infusions (5x105 and 6x106 CD3+ cells/kg). Ultimately, complete donor chimerism was obtained and persistent complete hematologic remission was achieved such that no neoplastic disease was found even 10 years after HSCT. Somatic mutations from the three tumors were used in order to identify mutation-specific neoantigens by filtering through the following criteria: MHC binding affinity, strong binding affinity compared to normal proteins, and protein expression in cancer. Identification of 84 common neoepitopes that played a role in recognition of mutation-specific proteins revealed the sarcoma-specific neo-peptide IL36G16-24YPSMCKPIT, which elicited a positive response when tested in IFN-gamma ELISPOT assays with the patient’s peripheral blood mononuclear cells. Furthermore, the neoantigen response to IL36G16-24YPSMCKPIT was, remarkably, detected in the patient’s peripheral blood mononuclear cells 7 years post-HSCT. Furthermore, tumor exon sequencing revealed 48 somatic mutations detected in the GCT, 17 in the leukemia, and 331 in the sarcoma with phylogenic reconstruction revealing 13 shared events between the three malignancies confirming a common clonal origin. A TP53 driver splice site mutation, chromosome 17 splice site mutation involving CDK12, and five
loss of heterozygosity events including PTEN LOH were all seen amongst the GCT, hematologic malignancy, and sarcoma. Like the multi-headed hydra monster from Greek mythology, mediastinal GCTs with secondary somatic tumors tend to come back stronger when the heads are chopped off. However, the key to killing the hydra, and possibly to overcoming this often fatal malignancy, is to strike a blow to the common part (the body, or in this case, shared neoantigen).

Despite Genoud et al. successfully demonstrating the potential of donor T lymphocytes infusions in this case-study, there are some limitations to the present findings. Firstly, the study's reliance on a single patient and lack of a comparative group limits its ability to establish broad conclusions or generalize findings to a larger population. Currently, high-dose chemotherapy and autologous stem cell transplantation (auto-SCT) have been used to treat relapsed GCTs10. However, such a treatment regimen has been shown to have patients recurrently relapsing with hematologic disease, all of which have demonstrated common mutations8. The findings in this study argue for the role of allogeneic stem cell transplant and also open the doors to further exploration of novel treatments. For example, with the identification of the sarcoma-specific neo-peptide IL36G16-24YPSMCKPIT, there is potential for the development of CAR T cell therapy which may prove to have efficacy against development of malignancies in patients with GCTs. Additionally, a concern with usage of donor lymphocyte infusions is that patients are a high risk for developing Graft versus Host Disease (GVHD), which has further potential to evolve into chronic disease. Development of alternative therapies that can elicit a neoantigen-specific T cell response, such as CAR T cell therapy, which have predominantly acute adverse events, may provide clinicians and patients with better alternatives with regards to therapeutic options.

In conclusion, the study by Genoud et al. provides hope of successful treatment options for patients with mediastinal GCTs refractory to general therapy by using neoantigen-specific T cell response following a donor lymphocyte infusion post allogeneic HSCT. The authors have demonstrated a favorable outcome in a patient ten years after HSCT which if shown in a larger number of patients, could ultimately help patients with achieving persistent and complete remission from mediastinal GCTs and secondary somatic malignancies.

References:

Figure: How Donor T-Lymphocyte Infusion Can Lead to Neoantigen Specific Response in Mediastinal GCT
Donor blood

Isolation of donor T-lymphocytes

Infusion of lymphocytes to patient

Lymphocyte migration and IL36G_{16-24} YPSMCKPIT neo-antigen recognition

T-cell dependent immune destruction