The unexpected and unresolved roles of PDGFRA and PDGFRB in T-cell acute lymphoblastic leukemia

by Krista Verhoeft and Jan Cools

Received: January 26, 2024.
Accepted: February 15, 2024.


Publisher's Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
The unexpected and unresolved roles of PDGFRα and PDGFRβ in T-cell acute lymphoblastic leukemia

Krista Verhoeft,1,2 Jan Cools1,2

1 Center for Human Genetics, KU Leuven, Leuven, Belgium
2 Center for Cancer Biology, Leuven, Belgium

Corresponding author: Jan Cools – jan.cools@kuleuven.be

Platelet-derived growth factor (PDGF) has been investigated for over 50 years. Despite the numerous detailed studies about the PDGF growth factors and their receptors PDGFRα and PDGFRβ in health and disease, new findings, such as those reported by the group of Pieter Van Vlierberghe in this issue of Haematologica,1 keep surprising us about the diverse roles of these receptors in various cancers.

The platelet-derived growth factor receptor (PDGFR) family comprises a group of receptor tyrosine kinases with a characteristic split kinase domain. For the fascinating story about the discovery and cloning of PDGF and its receptors in the 1970s and 1980s, we refer to the review article by Bowen-Pope and Raines.2 Interestingly, the PDGFR family does not only include PDGFRα and PDGFRβ, but also FLT3, KIT and the CSF1R receptors, which all have very similar structures. Ligand binding causes homo- or heterodimerization of the receptor, which activates the kinase domains and leads to phosphorylation of the receptors as well as a variety of signaling proteins.3

All of these receptors are implicated in cancer development, either by being directly mutated and actively driving cancer development or by a role in angiogenesis, one of the hallmarks of solid tumors. The PDGFRα, PDGFRβ, FLT3 and KIT genes are now well known for their roles in various hematological malignancies. The ETV6-PDGFRβ fusion gene was one of the first identified oncogenes in this family in myeloid neoplasms often associated with eosinophilia. Since then, many other PDGFRβ fusions have been identified with numerous fusion partners. Later, internal tandem duplications (ITDs) were observed in FLT3 in AML, KIT mutations were identified in systemic mastocytosis and the FIP1L1-PDGFRα fusion was identified as a cryptic but recurrent fusion gene in chronic eosinophilic leukemia.5-7 In solid tumors, PDGFRα or PDGFRβ amplification/overexpression are often found and in gastrointestinal tumors mutant PDGFRα or mutant KIT are important oncogenic drivers.8

In acute lymphoblastic leukemia (ALL), however, PDGFRα or PDGFRβ alterations were to date only detected in few isolated cases, including in Ph-like ALL and in few T-ALL cases.9,10 In this issue of Haematologica, the group of Pieter Van Vlierberghe identified an MYH9-PDGFRβ fusion gene in one case of T-lymphoblastic lymphoma (T-LBL). Moreover, upon subsequent further exploration in T-ALL, they identified expression and phosphorylation of PDGFRβ in several T-ALL cases.1 Surprisingly, another group recently described PDGFRα fusion genes in relapsed/refractory T-ALL.11 Although there have been some previous indications that PDGFRα/B could be rearranged in T-cell malignancies, these recent studies definitively identify activated PDGFRα and PDGFRβ as drivers of T-ALL and T-LBL and as possible therapeutic targets in T-cell malignancies.

In the study of the Van Vlierberghe group, the authors initially studied the oncogenic potential of MYH9-PDGFRβ in cell and mouse models.1 In line with previous reports on PDGFRβ fusion proteins, MYH9-PDGFRβ showed auto-phosphorylation, activation of downstream signaling proteins such as STAT5, and transformed Ba/F3 cells to growth factor independent growth. In addition, expression of this fusion gene in bone marrow cells of mice
resulted in the rapid development of myeloid or T-cell malignancies with accumulation of Gr1+/Cd11b+ myeloid cells or Cd4+/Cd8+ lymphoid cells, respectively. The development of both myeloid and lymphoid malignancies in the mouse model is similar to what has been observed with other oncogenic tyrosine kinases and is also dependent on the mouse strain that is used. Finally, the authors also demonstrated efficacy of a selective PDGFRβ inhibitor to reduce the leukemia burden in vivo using a patient-derived T-ALL xenograft model with a T-ALL sample that showed PDGFRβ activation.

Surprisingly, further analysis of T-ALL PDX samples by Western blotting revealed expression and phosphorylation of PDGFRβ in 4 of 11 T-ALL cases.1 Intriguingly, the exact cause of the elevated PDGFRβ protein levels and auto-phosphorylation could not be attributed to mutations or other obvious genomic changes, and thus remains to be solved. These elevated PDGFRβ protein levels may not be always detectable at RNA level and could thus be missed if only RNA-seq data are analyzed. Further studies are warranted to explore the sensitivity of T-ALL cases to PDGFRβ inhibitors. Moreover, in an independent study by Paolino et al. on relapsed/refractory T-ALL/T-LBL cases, these authors identified 3 of 14 cases with alterations of the PDGFRA gene.11 Here they found 2 cases with the FIP1L1-PDGFRA fusion and one case with the D842V mutation in PDGFRA. These recurrent PDGFRA and PDGFRB aberrations in T-ALL/T-LBL indicate that existing PDGFR kinase inhibitors could be tested in relapsed cases for which no other effective therapies exist.1,11 Imatinib is the oldest inhibitor (already off patent) that could be explored, since this inhibitor has very little side effects and is a very potent PDGFR kinase inhibitor.7 However, it is already known that the D842V mutations in PDGFRA causes resistance to imatinib, and in such cases sorafenib or other newer kinase inhibitors are needed.8

This work was initiated by Pieter Van Vlierberghe, but unfortunately he did not get the chance to complete the study and witness how this work could influence further research and be applied in the clinic.12 Pieter was an extraordinary scientist and very committed collaborator. He would do the impossible to contribute to other projects worldwide. Advancing T-ALL research to improve patient care was close to his heart.

As also demonstrated in this study here,1 Pieter had a talent to identify unique leukemia cases with interesting genomic alterations and then start from such observations to study that in larger cohorts. This work often led to fantastic new discoveries, such as the identification of the PHF6 mutations in T-ALL. In that work, Pieter started from few isolated cases with PHF6 deletions and finally discovered that PHF6 is one of the most frequently mutated genes in T-ALL.13

It is now more than one year ago that Pieter passed away after a courageous fight over several years during which he remained active in the field, contributed to studies, led his own research lab and obtained research funding. He was a "warrior", a "soldier" and a "champion", as in the lyrics of one of his favorite songs by "Oscar and the Wolf": "They say that I'm gonna be a star one day". We all miss him so much, but his contribution to T-ALL research and clinical practice is continuing to make changes and will forever.
References


