CD38 expression by plasma cells in extramedullary multiple myeloma

by Laura Notarfranchi, Fabrizio Accardi, Cristina Mancini, Eugenia Martella, Sabrina Bonomini, Roberta Segreto, Rosanna Vescovini, Anna Benedetta Dalla Palma, Gabriella Sammarelli, Giannalisa Todaro, Paola Storti, Jessica Burroughs-Garcia, Nicolas Thomas Iannozzi, Vincenzo Raimondi, Oxana Lungu, Stefania Ricci, Luisa Craviotto, and Nicola Giuliani

Received: August 28, 2023.
Accepted: October 31, 2023.

Publisher’s Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors’ final approval; the final version of the manuscript will then appear in a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
CD38 expression by plasma cells in extramedullary multiple myeloma.

Laura Notarfranchi1, Fabrizio Accardi1, Cristina Mancini2, Eugenia Martella2, Sabrina Bonomini3, Roberta Segreto3, Rosanna Vescovini1, Anna Benedetta Dalla Palma1, Gabriella Sammarelli3, Gianna Todoros4, Paola Storti1, Jessica Burroughs-Garcia5, Nicolas Thomas Iannozzi1, Vincenzo Raimondi1, Oxana Lungu1, Stefania Ricci4, Luisa Cavatorta1, Nicola Giuliani1, 4.

1. Department of Medicine and Surgery, University of Parma, Parma, Italy.
2. Pathology Unit, “Azienda Ospedaliero-Universitaria di Parma”, Parma, Italy.
3. Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.

§Actual affiliation: Hematology Unit, Azienda USL Toscana Nord Ovest, Carrara, Italy
$ Actual affiliation: Hematology, Azienda Ospedaliera «Ospedali Riuniti Villa Sofia- Cervello», Palermo, Italy

Corresponding author
Nicola Giuliani, MD, PhD.
Department of Medicine and Surgery, University of Parma, Parma, Italy
Via Antonio Gramsci 14, 43126 Parma (PR), Italy
email: nicola.giuliani@unipr.it

Running Title: CD38 and extramedullary myeloma

KEYWORDS
CD38, multiple myeloma, extramedullary disease

ACKNOWLEDGMENTS
We would like to thank the Associazione Italiana contro Leucemie, Linfomi e Mielomi ONLUS, ParmAIL for the support.

CONFLICT OF INTEREST
Nicola Giuliani received research funding and honoraria from Amgen, Bristol-Myers Squibb, Takeda, Celgene, Millennium Pharmaceuticals, and Janssen Pharmaceuticals. The other authors declare no financial interests.

DATA STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

AUTHOR’S CONTRIBUTIONS
L.N., F.A. and A.B.D.P. provided clinical data and enrolled patients.
R.S., R.V. and S.B. performed the flow cytometry analysis.
G.T. and G.S. performed the cytogenetic analysis.
L.N., F.A. and N.G. analyzed data and wrote the manuscript.
F.A. performed statistics analysis.
S.R. Managing of patient’s clinical data.
L.C. read and provided comment.
N.G. approved the final version of the manuscript.
All authors contributed to the article and approved the submitted version.
Letter to Editor

Extramedullary disease (EMD) is a rare manifestation of multiple myeloma (MM) characterized by a proliferation of PCs outside of the bone marrow (BM), and it represents an unmet medical need in the treatment of MM patients (pts). Thus, a better characterization of the plasma cells (PCs) features of the EMD is critical to improve the treatment.

The EMD can be found at the time of diagnosis (primary EMD) with an estimated incidence of 3–5% or at the time of relapse (secondary EMD) with an incidence of 6-20%. Moreover, EMD can be divided into two groups: EMD bone-related (EM-B), in which PCs extend directly from osteolytic bone lesions, while the second one results from PC infiltration into soft tissues with no relationship to the bone, or EMD soft tissue-related (EM-S). EM-B cells are still partially dependent on the BM microenvironment, while EM-S cells carry different biological characteristics. The outcome is worse for pts with EM-S compared with those with EM-B and this difference could be due to the different biological features of the EM PCs.

The typical sites of EM-S may be different according to the stage of MM. At diagnosis, EMD is typically found in the skin and soft tissues, with usually only one site involved. At relapse, EMD can appear in more unusual sites such as the liver, kidneys, lymph nodes, breast, pleura, pericardium, and the central nervous system. The presence of EM-S represents an aggressive form of MM linked to high-risk genetic features, increased proliferation, and resistance to therapies.

Previous studies have shown that 1q21 amplification [amp(1q21)], a high-risk chromosomal abnormality, occurs more frequently in pts with EMD. It was shown that the frequency of amp(1q21) is higher in EM lesions than in BM. Therefore, it is possible that amp(1q21) is a contributing factor to EMD development. It is also noted that the increase in EMD 1q21 copy number negatively affected both progression-free survival (PFS) and overall survival (OS).

Beyond genetic alteration, EM PCs also present a modulation of different adhesion molecules involved in BM homing supports clonal PCs migration through the bloodstream. EM PCs demonstrate down-regulation of adhesion glycoprotein CD56, which normally maintains connection of MM cells to the BM osteoblastic niche. EM PCs also demonstrate an upper regulation of CD44, which is a membrane glycoprotein involved with cell homing and recirculation. The CD44v isoform is commonly found in cancer stem cells and has low-level expression in normal cells.

Another important adhesion molecule in the MM biology is CD38: a multifunctional transmembrane glycoprotein, highly expressed by both normal and malignant PCs. CD38 is also an ectoenzyme involved in the production of adenosine in the BM niche. CD38 is considered a hallmark of MM cells and a therapeutic target for anti-CD38 antibody-based approach. In fact, there is limited data regarding the efficacy of daratumumab, an anti-CD38 monoclonal antibody, in EMD. Clinical trials have demonstrated that daratumumab is less effective in EMD pts compared to MM pts without EMD. This phenomenon could be explained by decreased CD38 expression on EMD PCs.

The CD38 expression profile of PCs in EMD pts is still unknown thus in this study, we performed a comparative analysis of CD38 expression and other adhesion molecules such as CD56 and CD44 between BM PCs and EMD PCs. The study was approved by local Ethic Committee and conducted according to the Helsinki declaration. Patients included in the study signed a written informed consent.

We retrospectively investigated 22 MM pts with biopsy-proven EMD treated in our Hematological Unit at the University of Parma from 1999 to 2020. The immunostaining from BM and EMD biopsies were scored on a 5-tiered scale using a semi-quantitative evaluation of the percentage of CD38, CD56, and CD44 expressed by MM cells.

In our cohort of MM pts, 3 of them presented with EMD at diagnosis, while 19 pts presented EMD at relapse. 46% of the pts presented with a high-stage MM (ISS III). 20 pts presented an initial diagnosis of MM, while 2 pts were affected by primary plasma cell leukemia (pPCL). The median age at the time of the diagnosis was 67 years old (range 47-76). Men made up 60% of the entire population. The median time to EMD appearance during relapse was 29 months (range 9-201 months). The most frequent MM subtype was light chain MM (41%), followed by IgG and IgA. A median LDH value, available in 14 pts, was slightly elevated (517, normal value < 500 U/L) (Table 1).
The most frequent CRAB criteria were anemia (73%), followed by bone disease (64%), renal failure (27%), and hypercalcemia (14%). In our population, a high BM tumor burden was documented with a median BM PC infiltration equal to 60% (range 0-90%).

Overall, 15 of 18 (88%) pts with available in situ hybridization (FISH), showed two or more cytogenetic alterations. The most frequent cytogenetic aberration reported was amp(1q21) (74%), as reported by the literature, followed by del(13q) (58%), del(1p32) (42%), and hyperdiploidy (21%) (Supplementary Figure 1). 55% of MM pts developed multiple plasmacytomas. The most common sites were soft tissue and the liver/spleen, which represent 42% of the total EMD, followed by lymph nodes (15%). In 41%, the EMD relapse was dissociated from the BM relapse.

Furthermore, our immunohistochemistry analysis showed a high score of CD56 (3-4) in 5 of 18 (28%) EMD samples and was absent in 12 of 18 (67%) pts. Discordant expression of CD56 was observed in 17% of samples, with a strong down-regulation in the EMD samples compared to BM. CD44 showed a high score in 10 of 16 (63%) EMD samples and was absent in 3 of 16 (19%). 4 pts (25%) showed an up-regulation of CD44 expression in the EMD samples compared to the BM (Figure 1). Moreover, the expression of CD38 had a high score in 15 of 19 BM samples (79%) and was absent in 3 of 19 (16%) EMD samples. A down-regulation of CD38 expression was observed in 26% of the pts with in the EMD samples compared to BM. Indeed, 42% of total EM samples were characterized by a low CD38 immunohistochemical score with a percentage of positive PCs inferior to 49%. Noteworthy, in about a quarter of pts with matched BM and EMD biopsies available, a reduction of CD38 expression on neoplastic PCs was observed in EM samples compared to BM (Figure 2).

This observation confirms that CD38 median fluorescence intensity (MFI) is higher in BM PCs compared to circulating tumor cells (CTCs), which are characterized by a weak dependence on the BM microenvironment and a tendency to egress in peripheral blood. Moreover, we have shown that pts with a low EMD immunohistochemical score in EM had lower baseline CD38 expression levels on BM PCs compared with pts with a high immunohistochemical score (mean Log\(_{10}\) MFI CD38: 4.3 vs 3.7; \(p=0.004\)). In addition, we evaluated the Overall Survival (OS) in the cohort of MM patients according to the CD38 immunohistochemical score previously used in EMD and BM samples. We found that pts with EMD and a low CD38 score have a worse OS compared to pts with a high CD38 score (7.3 vs 18.05 months, \(p=0.039\)). This observation is in line with another study that showed how a CD38-low CD45\(^+\) CD81\(^+\) phenotypic profile identified a group of MM pts with poor outcomes.

Regarding the treatment of this cohort of pts, 20 of them received active treatment for EMD. Two pts did not receive active treatment for EMD because they had poor performance status. Radiation therapy as local therapy was delivered to 2 pts mainly with a disease control intent. Orchiectomy, a surgical procedure, was performed in 2 pts with an isolated EM relapse in the testes. Conventional chemotherapy was administered to 3 young (age ≤ 70) pts. Of the novel agents, proteasome inhibitors (PIs) were the drugs most frequently used (40%), mainly in association with alkylating agents or anthracycline. Immnomodulatory drugs (IMiDs) were administered mostly to pts already exposed to PIs (35%). Daratumumab was used in one pts in association with conventional chemotherapy. High-dose chemotherapy followed by autologous SCT (stem cell transplant) was performed in 4 out of 20 (20%) pts, while allogenic SCT was performed in one pt.

The median OS from MM diagnosis in the entire study population was 49.3 months (95% CI: 30.97 – NA) while the median OS from EMD diagnosis was only 13.1 months (95% CI: 6.8 – 25.3). It confirms the poor outcome of this MM clinical feature as reported by other studies.

In conclusion, our data indicate that the lack of CD38 expression may occur in EMD lesions when compared to BM lesions with a discordant expression of CD44 and CD56. The lack or reduced expression of CD38 in a consistent percentage of EMD samples, may have a potential therapeutic impact involving the efficacy of anti-CD38 monoclonal antibodies in MM pts with EMD. As has already been reported in the literature, pts with MM and EMD seem to have a lower response to anti-CD38 antibody than pts with MM without EMD. At the moment, however, this finding does not lead to a change of therapy for this subgroup of pts. Clinical data regarding the efficacy of daratumumab in EMD are needed, and clinical trial of daratumumab...
combined with bortezomib, cyclophosphamide, and dexamethasone in pts with EMD at diagnosis and first relapse is ongoing (EMN19 study, NCT 04166565).
References

Table 1: Patient characteristics at the diagnosis (n°= 22)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Number, (%) or median range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (M/F)</td>
<td>13/9 (60%/40%)</td>
</tr>
<tr>
<td>Median age</td>
<td>67 (47-76)</td>
</tr>
<tr>
<td>Diagnosis (MM/pPCL)</td>
<td>20/2 (91%/9%)</td>
</tr>
<tr>
<td>EMD-S Diagnosis/Relapse</td>
<td>3/19 (14%/86%)</td>
</tr>
<tr>
<td>Isotype (IgG/IgA/LC)</td>
<td>6/7/9 (27%/32%/41%)</td>
</tr>
<tr>
<td>Light chain (κ/λ)</td>
<td>10/12 (45%/55%)</td>
</tr>
<tr>
<td>ISS (I-II-III)</td>
<td>6/6/10 (27%/27%/46%)</td>
</tr>
</tbody>
</table>

Abbreviations = M: male; F: female; MM: multiple myeloma; pPCL: primary plasma cell leukemia; EMD-S: extramedullary disease-soft tissue-related; LC: light chain; ISS: International Staging System
Figure legends

Figure 1. Immunohistochemistry (IHC) Score of matched BM and EMD in MM patients.
Score 0 (rare CD38 or CD44 or CD56 positive cells, <5%); score 1 (CD38 or CD44 or CD56 positive cells, 5% to 24%); score 3 (CD38 or CD56 or CD44 positive cells, 25% to 49%); score 4 (CD38 or CD44 or CD56 positive cells >75%).
(A) CD44 IHC score of matched BM and EMD; (B) CD56 IHC score of matched BM and EMD; (C) CD38 IHC score of Matched BM and EMD.

Figure 2. CD38 protein expression by PCs assessed by immunohistochemistry on BM and on EM sites.
(A) Immunohistochemical score 0 in BM (rare CD38 positive cells, <5%); (B) Immunohistochemical score 1 in BM (CD38 positive cells, 5% to 24%); (C) Immunohistochemical score 3 in BM (CD38 positive cells, 25% to 49%); (D) Immunohistochemical score 4 in BM (CD38 positive cells >75%).
(E) Soft tissue sample, immunohistochemical score 0 (rare CD38 positive cells, <5%); (F) Soft tissue sample, immunohistochemical score 1 (CD38 positive cells, 5% to 24%); (G) Liver sample, immunohistochemical score 3 (CD38 positive cells, 25% to 49%); (H) Bowel sample, immunohistochemical score 4 (CD38 positive cells >75%).
BM CD44+ Score

<table>
<thead>
<tr>
<th>EMD CD44+ Score</th>
<th>Score 0</th>
<th>Score 1-2</th>
<th>Score 3-4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score 0</td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Score 1-2</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Score 3-4</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>

BM CD56+ Score

<table>
<thead>
<tr>
<th>EMD CD56+ Score</th>
<th>Score 0</th>
<th>Score 1-2</th>
<th>Score 3-4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score 0</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Score 1-2</td>
<td>1</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Score 3-4</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>1</td>
<td>8</td>
<td>18</td>
</tr>
</tbody>
</table>

BM CD38+ Score

<table>
<thead>
<tr>
<th>EMD CD38+ Score</th>
<th>Score 0</th>
<th>Score 1-2</th>
<th>Score 3-4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score 0</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Score 1-2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score 3-4</td>
<td></td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>1</td>
<td>15</td>
<td>19</td>
</tr>
</tbody>
</table>
Supplementary figure 1: Distribution of chromosomal abnormalities in PCs from MM patients with EMD.

Abbreviation = Hy: hyperdiploidy