Unveiling amphiregulin: a blood-based biomarker for graft-versus-host disease risk assessment and monitoring

by Sung Choi

Received: September 20, 2023.
Accepted: October 5, 2023.

Citation: Sung Choi. Unveiling amphiregulin: a blood-based biomarker for graft-versus-host disease risk assessment and monitoring.

Publisher's Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
Unveiling amphiregulin: a blood-based biomarker for graft-versus-host disease risk assessment and monitoring

Sung Won Choi

University of Michigan, Michigan Medicine, Blood and Marrow Transplantation Program; Ann Arbor, MI, USA

Correspondence:
Sung Won Choi MD MS, 1500 E. Medical Ctr Dr
D4115 Medical Professional Building SPC 5718
Ann Arbor, MI, USA
E-mail: sungchoi@umich.edu
Tel: 734-615-5707 (office); 734-615-0464
Over recent decades, our understanding of the genesis and pathophysiology of acute graft-versus-host disease (aGVHD) has significantly advanced. However, a key challenge has remained in the field: for clinicians to accurately predict GVHD-related mortality based on symptom severity alone. The severity of symptoms often inadequately reflects the mortality-risk associated with aGVHD, particularly due to the intricate dynamics of the body’s response to therapy and the dual nature of the beneficial graft-versus-leukemia effect. In the quest to address these key clinical dilemmas, a new era of leveraging blood-based biomarkers emerged as a promising avenue for non-invasive risk assessment and monitoring of aGVHD.1

In the early 1990s, the focus rested primarily on pro-inflammatory cytokine markers as potential indicators of GVHD (e.g., TNF, IL-2 receptor). Entering into the 2000s, sophisticated ‘-omics’ techniques, such as comprehensive profiling of plasma proteomes, substantially accelerated the ability to identify markers with heightened sensitivity and specificity. The first validated blood-based biomarkers for aGVHD were combined into a four-marker panel (IL-2Rα, TNFR1, IL-8, and HGF).2 Since then, notable biomarkers took center stage, including Reg3γ,3 ST2,4 and amphiregulin (AREG).5 This enhanced marker identification has not only enriched the grading criteria for aGVHD but has also paved the way for risk stratification strategies. Notably, standardized grading criteria and risk stratification methods, such as the Minnesota GVHD Risk Score6 and Ann Arbor Biomarker Score,7 have become instrumental in assessing GVHD severity and prognosis. These advancements underscore the dynamic evolution of our diagnostic capabilities, further deepening insights into GVHD’s underlying mechanisms.

Nonetheless, predicting disease onset and subsequent disease course, including response to treatment, remains a grand challenge in medicine, limiting the full potential of personalized medicine. As complex dynamical systems, detection of disease at its earliest, pre-symptom stage is often complicated by changes occurring over time based on new, ongoing data about the disease process. The once “snapshot” paradigm of measurement in the transplant field has evolved through analysis of frequent, non-invasive blood samples obtained longitudinally at designed time points within a framework of robust biorepositories or multi-center clinical trials with well-annotated clinical data. Analyzing samples derived from the Chronic GVHD Consortium and Mount Sinai Acute GVHD International Consortium,8 followed by Blood and Marrow Transplant Clinical Trials Network 0302 and 0802 studies, Holtan and colleagues validated initial AREG biomarker investigation by confirming its prognostic significance in aGVHD.9 They have now comprehensively evaluated the utility of AREG as a monitoring biomarker in two recent clinical trials.10 The first trial investigated urinary-derived human chorionic gonadotropin/epidermal growth factor (uhCG/EGF) in supportive care for high-risk aGVHD patients enrolled in a single-center setting (NCT02525029). The second trial, known as the REACH1 Study, involved patients with steroid-refractory aGVHD enrolled in a multi-center setting (NCT02953678).

A key observation from the study was the consistency of AREG’s performance across different measurement platforms. The correction of AREG levels between ELISA and microfluidic immunoassay platforms demonstrated a high degree of agreement, highlighting its potential feasibility for implementation in clinical laboratories. The analyses yielded several notable findings. In patients achieving a complete response
at day 28 of uhCG/EGF therapy, AREG levels exhibited a significant decrease from baseline to day 56 (mean, 98 vs 32 pg/mL, \(p=0.006\)). Conversely, AREG levels remained relatively stable in patients with partial or no response to hCG/EGF treatment. The identification of a specific AREG cutoff (\(\geq 212\) pg/mL) at study baseline provided a valuable tool for risk assessment. Patients with AREG levels exceeding this threshold faced a markedly higher risk of rapid mortality within a median of 62 days.

Interestingly, similar trends in the data were observed in the REACH1 Study. Patients who achieved a CR experienced a substantial decrease in AREG levels from baseline to day 56 (mean, 174.7 vs 63.6 pg/mL, \(p=0.007\)). This trend also extended to patients treated with ruxolitinib who showed a very good partial response or partial response. In contrast, patients with progressive disease exhibited no significant changes in AREG levels over time. Multivariate analyses further highlighted the importance of response at day 28 and baseline AREG as independent predictors of survival in both cohorts. In the uhCG/EGF study, patients with high baseline AREG faced a 4.2-fold increased risk of mortality, while those treated with ruxolitinib and high baseline AREG had a 2.7-fold elevated risk of death.

Using these two study cohorts, Holtan and colleagues established a universal AREG cutoff of \(\geq 330\) pg/mL, unveiling AREG as a potential early mortality risk assessment tool. This finding holds particular relevance in clinical scenarios where interpreting response may be challenging due to confounding variables, such as medication side effects, gastrointestinal infections, or other dietary alterations. The investigation by Holtan and colleagues further delved into the complex dynamics of AREG, shedding light on its diverse physiological roles. First described in 1988 as a signaling molecule, AREG belongs to the epidermal growth factor (EGF) protein family and is integral to cellular processes, such as growth, differentiation, and survival. Produced by epithelial cells, fibroblasts, as well as immune cells, AREG binds to the EGF receptor on target cells, and has shown to be a key player in type 2-mediated resistance and tolerance, including in murine GVHD biology.\(^{11}\) Although elevated AREG levels are noted during aGVHD, tissue expression patterns have varied. Recent evidence hinted at the involvement of immune cells in circulating AREG production during aGVHD. Alloreactive CD4 T cells, for example, were found to upregulate AREG expression during murine GVHD. These findings, coupled with the observed correlation between circulating AREG and cell-bound AREG on various immune cell subsets suggest a complex interplay between immune cells and AREG.\(^{12}\)

In conclusion, the study unveils AREG’s role as a biomarker that closely aligns with risk stratification and clinical response monitoring in life-threatening aGVHD. Being able to measure AREG reliably across different measurement platforms holds promise for rapid adoption across institutions where HCTs are being performed. The integration of correlative biomarkers into the framework of clinical trial design represents a significant advancement in the field. Future research endeavors should validate these findings in real-time as well as examine AREG in different settings, such as haploidentical transplants, which may further improve our understanding of this biomarker’s performance.
REFERENCES