Small myeloid subclones are present at diagnosis of multiple myeloma in patients who develop secondary myelodysplastic syndromes

by Guillaume Escure, Elise Fournier, Cynthia Saade, Lama Hasan Bou Issa, Inès Arib, Rémi Tilmont, Nicolas Gazeau, Binta M. Thiam, Morgane Chovet, Maxime Delforge, Nicolas Gower, Léa Fléchon, Doriane Cavalieri, Paul Chauvet, Morgane Nudel, Laure Goursaud, Céline Berthon, Bruno Quesnel, Thierry Facon, Claude Preudhomme, Nicolas Duployez, and Salomon Manier

Received: August 8, 2023.
Accepted: October 11, 2023.

Publisher's Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors’ final approval; the final version of the manuscript will then appear in a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
Small myeloid subclones are present at diagnosis of multiple myeloma in patients who develop secondary myelodysplastic syndromes

Running title: Small myeloid subclones evolution in myeloma

Guillaume Escure1, Elise Fournier2, Cynthia Saade1, Lama Hasan Bou Issa3, Inès Arib1, Rémi Tilmont1, Nicolas Gazeau1, Binta M. Thiam1, Morgane Chovet1, Maxime Delforge1, Nicolas Gower1, Léa Fléchon3, Doriane Cavalier1, Paul Chauvet1, Morgane Nudel1, Laure Goursaud1, Céline Berthon1, Bruno Quesnel1,3, Thierry Facon1, Claude Preudhomme1,3, Nicolas Duployez2,3, Salomon Manier1,3

1 Department of Hematology, Lille University Hospital, Lille, France
2 Department of Biology Pathology, Lille University Hospital, Lille, France
3 Canther Unit, INSERM UMR-S1277, CNRS UMR9020, ONCOlille, Lille University, France

Correspondence:
Salomon MANIER, MD, PhD, Department of Hematology
Lille University Hospital 59000 Lille, France
salomon.manier@chu-lille.fr

Highlights:
We performed sequential genomic analyses of bone marrow samples to test whether myelodysplastic subclones are already present, prior to treatments, in patients with myeloma who develop secondary myelodysplastic syndromes.

Our work indicates that tiny TP53-mutant myeloid subclones are present years before developing secondary myelodysplastic syndromes and are selected by treatment pressure, particularly in the context of lenalidomide exposure.
Acknowledgments
We would like to express our gratitude to the Tumorothèque of Lille University Hospital for their collaboration in this project.

Author contributions
Conceptualization, methodology, data acquisition: G.E., E.F., C.P., N.D., S.M.
Data analysis: all authors
Writing, Review & Editing: All authors

Conflict of interest
The authors declare no conflict of interest.

Data availabilities
Genomic data from the targeted NGS panel and the digital droplet PCR have not been deposited for public access.
To the Editor

Patients with monoclonal gammopathy of undetermined significance (MGUS) or smoldering multiple myeloma (SMM) have higher risks of developing myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) than the general population, even without receiving any treatment \(^1\), \(^2\). This risk is even more important in patients with multiple myeloma (MM) receiving myeloma-specific therapies \(^3\), with a reported prevalence of therapy-related myeloid neoplasms (t-MN) in about 3% of all patients \(^4\).

Substantial improvements in survival of patients with MM have been observed in the recent years with the emergence of new generation treatments such as proteasome inhibitors, immunomodulators and monoclonal antibodies. As a consequence, there are growing concerns about the risk of developing therapy-related myelodysplastic syndrome (t-MDS) or therapy-related acute myeloid leukemia (t-AML) with newer regimens. Those complications are uncommon but associated with a poor prognosis. The reported median survival after the diagnosis of MDS or AML is 6.7 months \(^5\).

The risk of t-MN in MM is associated to multiple factors, including age, sex, ethnicity, genetics and prior treatment received \(^3\). Among MM-specific therapies, alkylating agents and lenalidomide have drawn specific attention. High-dose melphalan used in ASCT conditioning is thought to induce an accumulation of mutations in myeloid cells leading to t-MN \(^6\). The 5-year cumulative incidence of MDS and AML after autograft stem cell transplantation (ASCT) for MM is 1.0\% \(^7\). And the reported median times from ASCT to t-MDS or t-AML are 5 (1-15) and 4 (1-9) years, respectively \(^8\). Lenalidomide maintenance has been associated with an increased risk of developing t-MN \(^9\), \(^10\). Those patients developing t-MN after being exposed to lenalidomide have an increased incidence of TP53 alterations in myeloid cells \(^11\). This suggests that lenalidomide might provide a selective advantage to TP53 mutant myeloid subclones. Finally, the role of clonal hematopoiesis of indeterminate potential (CHIP) and pre-existing dysplastic hematopoiesis is still unclear \(^12\), \(^13\).
In this work, we hypothesized that myelodysplastic subclones might be already present at the time of MM diagnosis, even years before developing a t-MDS. We analyzed a case series of five patients with MM who developed t-MDS in our Institution between January 2017 to March 2020 and for which we had serial bone marrow samples. This study has been approved by the institutional review board (IRB) of Lille University Hospital and the Ethics Committee Nord Ouest IV (protocol # ECH23/02) in accordance with the Declaration of Helsinki. Median age at diagnosis of MM was 69 years (57 – 75), Table 1. Two patients had high-risk cytogenetic features per IMWG criteria. Median time between MM diagnosis and MDS diagnosis was 5 years (3 – 8) and median prior lines of treatment was 3 (1 – 4). Four out of 5 patients received an ASCT and all patients received immunomodulatory drugs, specifically lenalidomide. Different treatment exposures are depicted on Table 1 and Figure 2. At the time of t-MDS, patients had a bone marrow evaluation with cytology, myeloid NGS panel sequencing and conventional karyotypes. Of note, all patients had no or minimal plasma cell infiltration at that time point. We observed in all 5 cases the presence of both a monosomal karyotype and a TP53 mutation in their myeloid clones. Three patients had a complex karyotype. Other genomic mutations involved DNMT3A, TET2, RUNX1, ASXL1, SETBP1 (Fig. 1). In all cases, the diagnosis of MDS happened after a prolonged exposure to lenalidomide. The size of MDS clones were high with a median cancer cell fractions of TP53 mutations of 37% (range 30-82). In order to capture the evolution of the t-MDS clones, we analyzed bone marrow samples at diagnosis of MM and at intermediate time points when available by NGS and ddPCR for TP53 mutations (except for one patient due to a lack of material). No mutations were detectable by NGS sequencing with a limit of detection of 1%. But all patients had a detectable TP53 subclones (with allelic fraction between 0.14 to 0.20%) at the time of MM diagnosis by ddPCR, between 3 to 8 years before being diagnosed with t-MDS (Fig. 2). In all 4 cases with sequential samples we observed a clonal evolution of the t-MDS subclones during MM treatments. Interestingly, in one case with multiple samples (Pt#2), the selection of the TP53 subclone happened during lenalidomide treatment and not during exposure to 3 prior lines of treatment.
This work suggests that tiny myeloid subclones with \textit{TP53} mutations are present in patients with MM, years before developing t-MDS. The concept of acquisition or selection of pre-existing mutations is essential to better understand the processes that drive myeloid transformation during treatments. Our data indicate that \textit{TP53} mutant subclones were pre-existing and not induced by MM therapies. In a large study over 10,000 individuals, patients who had received previous cancer treatment were more likely to have CHIP compared with treatment-naive patients, likely reflecting the selection pressure induced by therapies 6. Evidences suggest that mutations are selected differentially based on prior treatment exposures. Mutations in \textit{ASXL1} are enriched in current or former smokers, whereas cancer therapy with radiation, platinum and topoisomerase II inhibitors preferentially selects for clones with mutations in DNA damage response (DDR) genes (\textit{TP53}, \textit{PPM1D}, \textit{CHEK2}). This indicates that DDR and non-DDR clones have distinct evolutionary trajectories with different competitive fitness. This is illustrated in our case series in Pt\#1 where a \textit{TP53}/\textit{DNMT3A} subclone emerges during treatment with lenalidomide while a \textit{TET2} subclone is eliminated (Fig. 2). In the case of Pt\#2, an \textit{ASXL1} subclone is initially selected during treatment with cytotoxic agents and proteasome inhibitor but disappears during treatment with lenalidomide, while a \textit{TP53} subclone emerges during lenalidomide exposure (Fig. 2). It was recently reported that lenalidomide provides a selective advantage to \textit{TP53} mutant clones in hematopoietic stem cells 11. In patients with t-MN, \textit{TP53} mutations are significantly associated with prior exposure to immunomodulatory drugs, specifically lenalidomide. Interestingly, pomalidomide does not provide an equivalent level of selection of \textit{TP53} subclones due to difference in CK1\(\alpha\) degradation and p53-dependent apoptosis 11.

Our data demonstrate the presence of tiny \textit{TP53} myeloid subclones, in patients with MM diagnosis, up to 8 years before developing t-MDS. Those \textit{TP53} subclones are expanded during MM-specific treatments, particularly by lenalidomide exposure, and drive transformation to myeloid neoplasm. Altogether, theses data suggest the potential for exploring alternative therapeutic strategies in patients with MM and the presence of \textit{TP53}
myeloid subclones in order to mitigate the risk of developing t-MN, especially due to long term exposure to lenalidomide.
Table 1. Characteristic of patients

<table>
<thead>
<tr>
<th>At diagnosis of MM (n=5)</th>
<th>Between MM and MDS diagnoses (n=5)</th>
<th>At diagnosis of MDS (n=5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>69 (57-75)</td>
<td>76 (64-78)</td>
</tr>
<tr>
<td>ISS stage III</td>
<td>60%</td>
<td>100%</td>
</tr>
<tr>
<td>High-risk cytogenetics</td>
<td>40%</td>
<td>60%</td>
</tr>
<tr>
<td>Time (years)</td>
<td>5 (3 – 8)</td>
<td>100%</td>
</tr>
<tr>
<td>Number of lines of treatment</td>
<td>3 (1 – 4)</td>
<td>100%</td>
</tr>
<tr>
<td>ASCT</td>
<td>80%</td>
<td>100%</td>
</tr>
<tr>
<td>Alkylating agents</td>
<td>80%</td>
<td>100%</td>
</tr>
<tr>
<td>Lenalidomide</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Survival from MDS diagnosis</td>
<td>Median OS (months)</td>
<td>21 (1-38)</td>
</tr>
</tbody>
</table>

ISS: International Staging System; ASCT: autograft stem cell transplantation; R-IPSS: Revised International Prognostic Scoring System
Figures legends

Figure 1. Genomic alterations at diagnosis of t-MDS. Genomic alterations were assessed at the time of t-MDS diagnosis by conventional karyotype and targeted NGS in myeloid cells.

Figure 2. Clonal evolution of myeloid subclones during MM treatments. Genomic alterations were evaluated on bone marrow samples, by a myeloid targeted NGS panel, at the time of t-MDS diagnosis and at the time of MM diagnosis. The NGS panel covers 90 myeloid genes. Libraries were prepared using the Twist BioScience® kit and sequenced on a NovaSeq6000 for a median depth of 3600X. Raw data were analyzed using MuTect2, Vardict, GATK and GnomAD. Droplet digital PCR (ddPCR) for each TP53 mutations were also performed on bone marrow samples at the time of MM and t-MDS diagnoses. Clonal evolution are depicted by variant allelic fractions (VAF).

VAF: variant allelic fraction; NGS: next generation sequencing; ddPCR: droplet digital PCR; Rd: lenalidomide-dexamethasone; VAD/DCEP: vincristine-adriamycine-dexamethasone / dexamethasone-cyclophosphamide-etoposide-cisplatin; HD high dose; Vd: bortezomib-dexamethasone; VTd: bortezomib-thalidomide-dexamethasone; R: lenalidomide; VRd: bortezomib- lenalidomide-dexamethasone.