Acute myeloid leukemia-driven IL-3-dependent upregulation of BCL2 in non-malignant hematopoietic stem and progenitor cells increases venetoclax-induced cytopenias

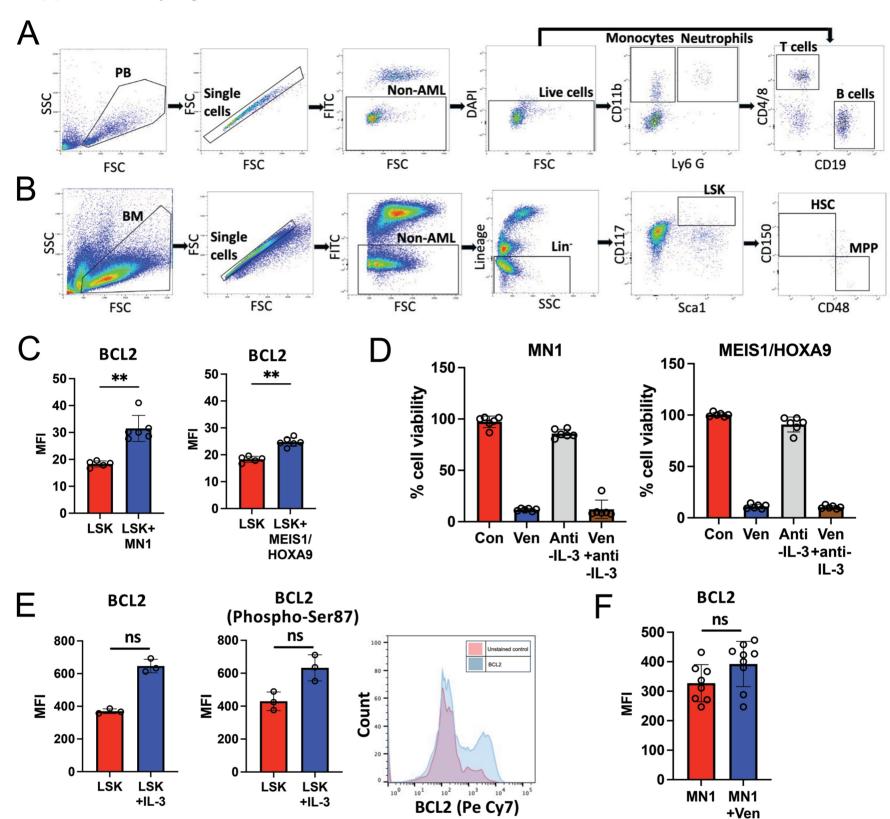
Authors

Dominic J. Fowler-Shorten,^{1°} Rebecca S. Maynard,^{1°} Katherine Hampton,^{1°} Annalisa Altera,^{1°} Matthew Markham,^{1°} Martha Ehikioya,^{1°} Edyta E. Wojtowicz,² Kristian M. Bowles,^{1,3#°} Stuart A. Rushworth^{1#°} and Charlotte Hellmich^{1,3#°}

¹Norwich Medical School, University of East Anglia; ²Earlham Institute, Norwich Research Park and ³Department of Haematology, Norfolk and Norwich University Hospital NHS Trust, Norwich, UK

#SAR and CH contributed equally as senior authors.

°Current address: Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, UK


Correspondence:

C. HELLMICH - c.hellmich@uea.ac.uk
S.A. RUSHWORTH - s.rushworth@uea.ac.uk

https://doi.org/10.3324/haematol.2023.283944

Received: July 19, 2023. Accepted: December 28, 2023. Early view: January 4, 2024.

©2024 Ferrata Storti Foundation
Published under a CC BY license

Supplementary Fig 1 – Flow cytometry gating, BCL2 expression and cell viability.

A) Gating strategy for B cells (CD4⁻ CD8⁻ CD19⁺), T cells (CD4⁺ CD8⁺ CD19⁻), monocytes (CD11b⁺ Ly6 G⁻) and neutrophils (CD11b⁺Ly6 G⁺). B) Gating strategy for non-malignant HSC (Lin⁻Sca1⁺CD117⁺CD150⁺CD48⁻), multipotent progenitor (MPP) (Lin-Sca1+CD117+CD150-CD48+) and LSK (Lin-Sca1+CD117+). C) BCL2 protein expression is elevated in LSKs co-cultured with both MN1 and MEIS1/HOXA9 AML subtypes. LSKs were isolated from BM of young C57BL/6 mice and 5x10⁴ cells were co-cultured in transwells with either MN1 or MEIS1/HOXA9 cells for 48h. BCL2 protein level was quantified by mean fluorescence intensity (MFI) in LSKs co-cultured with AML cells (n = 6) compared to LSK-only controls (n = 5) using flow cytometry. **p < 0.01 using Mann-Whitney U Test. D) Blocking IL-3 does not make AML cells resistant to venetoclax. 5x10⁴ MN1 and MEIS1/HOXA9 cells were cultured with 10 μM venetoclax, 5 μg/mL anti-IL-3 or both for 24h. Percentage cell viability was quantified using the CellTiter-Glo® luminescent assay in MN1 and MEIS1/HOXA9 cells remaining untreated (n = 6), treated with venetoclax (n = 6), treated with anti-IL-3 (n = 6) and treated with venetoclax and anti-IL-3 (n = 6). E) Total BCL2 and phosphorylated BCL2 protein levels are elevated in LSKs treated with IL-3. 2x105 LSKs were cultured in DMEM supplemented with 10% FBS and 1% Pen-Strep and treated with 100 ng/mL IL-3 for 24h. Total BCL-2 protein level and phosphorylated BCL2 within the BCL2-positive population was quantified by mean fluorescence intensity (MFI) in LSKs treated with IL-3 (n = 3) compared to LSK-only controls (n = 3) using flow cytometry. Data are non-significant using Mann-Whitney U Test. F) BCL2 protein levels were quantified by MFI in the lineage positive cell population of MN1 engrafted mice treated with venetoclax (n = 9) compared to control MN1 engrafted mice (n = 8). Data are non-significant using Mann-Whitney U Test. All data in C-F are represented as median + interquartile range.