Power out chronic lymphocytic leukemia: unplugging OXPHOS/mTOR pathways to overcome Venetoclax resistance

by Elodie Viry and Jerome Paggetti

Received: July 19, 2023.
Accepted: July 28, 2023.


Publisher’s Disclaimer.

E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors’ final approval; the final version of the manuscript will then appear in a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
EDITORIAL

Power out chronic lymphocytic leukemia: unplugging OXPHOS/mTOR pathways to overcome Venetoclax resistance

Elodie Viry and Jerome Paggetti

Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg

Correspondence: J. Paggetti; jerome.paggetti@lih.lu

Disclosure: The authors have no conflicts of interest to disclose.
In this issue of *Haematologica*, Chen et al. studied the contribution of metabolic pathways to CD40-induced Venetoclax resistance in chronic lymphocytic leukemia (CLL) (1). The BCL-2 inhibitor Venetoclax is a widely used first-line treatment in fit patients with CLL. Venetoclax-based treatment has shown efficacy and favorable safety profile, but emergence of resistance remains an important challenge to overcome. Development of chemoresistance is profoundly shaped by multifaceted interactions occurring within the tumor microenvironment. Indeed, Venetoclax efficiently eliminates quiescent circulating CLL cells in the peripheral blood, while it exhibits less complete response in proliferation centers, in which the CLL are exposed to a myriad of signals (2). Notably, within the lymph nodes, interactions between CLL and CD4+ T helper cells via CD40-CD40L signaling contribute to enhanced expression of anti-apoptotic proteins (i.e., BCL-XL, MCL-1 and BFL-1) in CLL cells, leading to subsequent resistance to anticancer therapies (3).

When entering in the proliferation centers, B-cell Receptor (BCR)-engagement induces metabolic reprogramming mainly relying on aberrant mitochondrial oxidative phosphorylation (OXPHOS) and increased glycolytic capacity/reserve in CLL cells, thereby promoting CLL survival and proliferation (4-6). More recently, the same research group has provided additional insights into the metabolism of CLL cells in lymph nodes and resistance to therapy (7). They demonstrated that BCR/CD40-engagement boosts the energy metabolism in CLL cells, involving enhanced glycolysis, OXPHOS and the tricarboxylic acid (TCA) cycle. They demonstrated for the first time the dependency of BCR/CD40-induced CLL cells to glutamine, being the main substrate to fuel the TCA cycle.

To further elucidate the mechanisms behind CD40-induced Venetoclax resistance in CLL, Chen and colleagues used in the present study an *in vitro* model in which CLL cells isolated from the peripheral blood of patients were activated with CD40L in order to mimic lymph node signaling (Figure 1A). Similar to resistant CLL cells arising from long-term selection with Venetoclax in therapy or laboratory, *in vitro* CD40 activated-CLL cells exhibit comparable metabolic characteristics. Here, their strategy was to use inhibitors of different metabolic pathways during CD40 stimulation, and subsequent exposure to Venetoclax. Thereby, the authors identified OXPHOS as the main driver of CD40-mediated resistance to Venetoclax, while neither the inhibition of glycolysis nor glutaminolysis counteract Venetoclax resistance. To go further into OXPHOS dismantling, the activity of complexes I, II, III and V of the electron transport chain (ETC) was independently targeted. The authors reported that only the inhibition of ETC complexes involved in proton pumping and ATP production (complexes I, III and V) leads to increased susceptibility to Venetoclax (Figure 1B). Inhibitors of ETC complexes I, III and V acted by reducing the two critical players in Venetoclax resistance, BCL-XL and MCL-1 proteins, and by down-modulating CD40 signaling through a negative feedback loop.

Moreover, Chen et al. highlighted that induction of OXPHOS and subsequent Venetoclax resistance, following CD40-stimulation of CLL cells, is mediated by mTOR signaling. As for OXPHOS...
inhibition, specific targeting of mTOR1/2 decreased the basal oxygen consumption and extracellular acidification rates, and limited the spare respiration capacity, therefore sensitizing CLL cells to Venetoclax.

Furthermore, the authors emphasize the crucial role of aberrant de novo protein translation in CD40-mediated Venetoclax resistance in CLL cells. These results strengthen recent findings demonstrating that BCR- or Toll-like receptors (TLR)-engagement leads to the activation of translation initiation in CLL cells. It appears that, rather than a general increase in mRNA translation, enhanced translation of specific pathways, particularly MYC and MCL-1, is likely to be essential for CLL survival and proliferation (8, 9). Interestingly, Chen et al. reported synergistic effects on translation when combining OXPHOS and mTOR inhibitors, converging to an almost complete rescue of CD40-mediated Venetoclax resistance.

In their study, Chen and colleagues shed light on the critical role of the tumor microenvironment in conferring resistance to therapies in CLL. They establish that CD40-mediated Venetoclax resistance in CLL is mediated by mTOR signaling and aberrant oxidative CLL metabolism, both mechanisms sharing an elevated translation rate as a common feature. The authors propose new therapeutic opportunities for CLL patients who are resistant to Venetoclax by combining OXPHOS and mTOR inhibitors. While mTOR and OXPHOS inhibitors have been approved for clinical use against different types of pathologies (10), some of them are now being tested in clinical trials for the treatment of resistant malignancies. One notable example is the combination of Everolimus, an FDA-approved mTOR inhibitor used in advanced kidney cancer, with Rituximab, a chimeric anti-CD20 monoclonal antibody, administered after high-dose consolidative therapy to prevent relapse in lymphoma patients. On the other hand, the OXPHOS inhibitor IACS-010759 has recently been investigated in phase I clinical trials involving patients with relapsed or refractory acute myeloid leukemia, as well as those with advanced, metastatic, or unresectable solid tumors. However, no clinical studies have been conducted to combine OXPHOS and mTOR inhibitors, particularly in the context of refractory malignancies. Chen and colleagues aim to address this gap by targeting both mTOR and OXPHOS, with the goal of overcoming resistance mechanisms observed in CLL, emphasizing the significance of addressing translation dysregulation and developing innovative therapeutic strategies.
References


Figure 1: CD40-mediated Venetoclax resistance in CLL cells involves mTOR and OXPHOS pathways.

(A) Within the lymph node, stimulation of CLL cells by T helper cells, via CD40-CD40L interaction, leads to increased OXPHOS, which is a crucial driver for Venetoclax resistance. During this process, the mTOR pathway connects OXPHOS with CD40 signaling. Both mTOR and OXPHOS pathways exhibit similar effects by promoting protein translation. Collectively, these two pathways likely impact the sensitivity of CLL cells to Venetoclax by upregulating the expression of anti-apoptotic proteins BCL-XL and MCL-1, while also over-activating CD40 signaling. 

(B) mTOR inhibition by AZD8055 decreases OXPHOS in CLL cells. Both mTOR inhibition and direct OXPHOS inhibition by Rotenone, Antimycin A, or Oligomycin lowers all regulators linked with Venetoclax sensitivity, including decreased protein translation, downregulation of the anti-apoptotic proteins BCL-XL and MCL-1, and down modulation of CD40 signaling. Together, OXPHOS and mTOR inhibitions synergistically counteract Venetoclax resistance in CD40-activated CLL cells.