Daratumumab and brentuximab vedotin combination therapy in T-cell acute lymphoblastic leukemia refractory to conventional chemotherapy and allogeneic stem cell transplant

Received: June 12, 2023.
Accepted: September 7, 2023.

Publisher's Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
Daratumumab and brentuximab vedotin combination therapy in T-cell acute lymphoblastic leukemia refractory to conventional chemotherapy and allogeneic stem cell transplant

Kebede H. Begna¹, Nadine H. Abdallah¹, Michelle Janania-Martinez², Abhishek A. Mangaonkar¹, Aruna Rangan³, Jennifer L. Herrick³, Naseema Gangat¹

¹Department of Internal Medicine, Division of Hematology, Mayo Clinic, Rochester, MN USA
²Division of Hematology/Oncology, Sanford Cancer Center, Sioux Falls, SD USA
³Department of Laboratory Medicine & Pathology, Division of Hematopathology, Mayo Clinic, Rochester, MN USA

Running title: Daratumumab and Brentuximab in relapsed/refractory T-ALL

Key words: daratumumab, brentuximab, acute lymphoblastic leukemia, T-cell

Text: 1480 words

Figures: 3

Data sharing: please email the corresponding author.

References: 16

Disclosures: none

Author Contributions: KB and NA wrote the paper, KB, NA, MJ, AM, and NG participated in patient care; AR and JH performed review of bone marrow biopsies. All authors reviewed and approved the final draft of the paper.

Corresponding Author: Kebede H Begna, MD; Division of Hematology, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 Tel-507-284-251, Email: begna.kebede@mayo.edu
To the editor:

T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) is an aggressive bone marrow neoplasm that accounts for 20% of acute lymphoblastic leukemias cases in adults.\(^1\) Despite high rates of complete remission with first-line combination chemotherapy, with approximately 50% survival at 5 years, the outcomes for patients with relapsed disease are dismal.\(^2\) There are limited salvage treatment options for patients with relapsed/refractory (R/R) disease.\(^3,4\) This highlights the need for effective therapeutic options with novel mechanisms of action. Daratumumab is a CD38 targeted IgG1κ human monoclonal antibody that is used in the treatment of newly diagnosed and R/R multiple myeloma.\(^5\) CD38 has been shown to be uniformly expressed on T-ALL blasts with persistent expression after treatment with chemotherapy.\(^6\) Preclinical studies have demonstrated efficacy of daratumumab using patient-derived xenograft models of T-ALL.\(^6,7\) There have been a few reports of daratumumab use in patients with R/R T-ALL and in patients who achieved a complete remission but were measurable residual disease (MRD) positive. Brentuximab vedotin is an antibody drug conjugate composed of a CD30 targeting chimeric IgG antibody and the microtubule inhibitor monomethyl auristatin E. It is currently approved for use in the first line setting in combination with chemotherapy in classical Hodgkin’s lymphoma\(^8\) and CD30+ peripheral T cell lymphoma,\(^9\) and as monotherapy in the R/R setting.\(^10\) One study demonstrated CD30 expression in 13 of 34 (38%) of cases of T-ALL by multicolor flow cytometry using a 20% cut off for positivity; and upregulation of CD30 expression during the course of high-dose chemotherapy in some cases, suggesting that CD30 may be a potential therapeutic target for T-ALL.\(^11\) However, there have not been prior clinical reports of brentuximab use in ALL. Here we report the use of daratumumab and brentuximab vedotin combination in a patient with heavily pretreated R/R T-ALL.
A 45-year-old female was diagnosed with T-cell acute lymphoblastic leukemia (T-ALL) after presenting with an enlarging anterior chest wall mass (Figure 1a) and leukocytosis (WBC count: 110.4 x 10^9/L, 84% blasts) with bicytopenia. Bone marrow immunophenotyping showed blasts expressing CD3, CD45(dim), CD7, CD38, nTDT, cCD3, TCR-gamma/delta(dim), CD5(dim), and CD58. Fluorescence in situ hybridization testing on the bone marrow showed a TRB rearrangement at 7q34 that was not fused with the common translocation partners (MYB, TLX1, LMO1 or LMO2) and trisomy of chromosome 9. Next generation sequencing (FoundationOne heme) showed JAK3 M511I, MYCN R357C, NOTCH1 L1600P, and PHF6 Y301fs*1 mutations. She was started on treatment with hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone (Hyper-CVAD) regimen and achieved a complete response after 1 cycle with MRD estimated at 0.7% by flow cytometry at a sensitivity of 0.1%. Positron emission tomography/computed tomography (PET/CT) showed resolution of the hypermetabolic soft tissue mass and improvement in splenomegaly with normal FDG activity (Figure 1b). After completing 5 cycles, she remained MRD positive at 0.05%. She subsequently received conditioning chemotherapy with cyclophosphamide and total body irradiation 1200 cGy followed by allogeneic bone marrow transplantation with 11/12 HLA-matched (DP permissive) unrelated donor. She experienced disease relapse, 3 months following transplant, and was enrolled on a clinical trial (EA9152) of liposomal vincristine 2.25 mg/m2 (days 1, 8, 15, and 22) and venetoclax (600 mg days 1-28). She experienced severe autonomic and sensory neuropathy after the first dose of liposomal vincristine leading to its discontinuation. She had persistent disease after completing 1 cycle of venetoclax, proceeded with salvage treatment with venetoclax combined with fludarabine, cytarabine, G-CSF, and idarubicin (FLAG-IDA). Bone marrow biopsy at day 21 showed persistent T-ALL with >95% bone marrow blasts. A repeat
FoundationOne-Heme revealed similar mutational profile with subclonal JAK1 R724C and STAT5B N642H mutations. She was subsequently started on nelarabine (1,000 mg/m2) (days 1, 3 and 5, reduced dose due to neuropathy) and achieved a MRD negative state after 2 cycles. This was followed by consolidation with a donor lymphocyte infusion (DLI) at a dose of 1×10^7 CD3 cells/kg from the original donor. However, approximately 1 month following DLI, she experienced another relapse with 72% lymphoblasts and immunophenotype showed blasts expressing CD10, CD45(dim), CD5, CD7, CD38, nTdT, cCD3 but did not express CD3, TCR-gamma/delta. Furthermore, immunohistochemistry also revealed blasts expressing diffuse CD38 (> 80% of blasts) and strong CD30 staining (Figure 3a, b, c and d). There were new FDG avid retroperitoneal and axillary lymph nodes and enlargement of the spleen with increased uptake on PET/CT (Figure 2a). Based on the CD38 and CD30 expression, she was started on treatment with weekly daratumumab 16 mg/kg (multiple myeloma schedule) and brentuximab vedotin 1.8 mg/kg every 21 days (Hodgkin’s lymphoma schedule). After 1 cycle, the bone marrow was markedly hypocellular with no morphologic features of involvement by T-ALL. MRD by flow cytometry was negative (a representative marrow after cycle 3 is shown in Figure 3 e, f, g and h). PET/CT showed interval resolution of lymphadenopathy and decrease in the size of the spleen with normal uptake (Fig. 2b). Due to persistent pancytopenia, cycle 2 was delayed by 1 month. The dose of brentuximab vedotin was reduced to 1.4 mg/kg starting with the 3rd cycle due to grade 2 sensory peripheral neuropathy. The 4th cycle was complicated by grade 4 neutropenia with bacteremia, grade 3 diarrhea, and grade 3 sensory peripheral neuropathy. Treatment-emergent toxicities were likely a result of prior exposure to multiple chemotherapies, and presence of pre-existing peripheral neuropathy. Therefore, brentuximab vedotin was discontinued and single agent daratumumab was maintained. To date, she has completed 8
weekly doses and 6 biweekly doses of daratumumab and remains in MRD negative complete remission for a duration of 8 months.

Here we demonstrate the efficacy of daratumumab in combination with brentuximab vedotin in a patient with R/R T-ALL, who had received four prior lines of conventional chemotherapy, including allogeneic stem cell transplant with DLI, with high disease burden who achieved deep and durable remission. At this time, patients with R/R T-ALL have limited therapeutic options and poor survival outcomes, especially when relapse occurs early after first-line induction chemotherapy. Despite evidence for uniform CD38 expression in T-ALL blasts, clinical experience with daratumumab in T-ALL has been limited to case reports and small case series. Ofran et al. reported clinical efficacy of daratumumab monotherapy in 3 patients with heavily pretreated T-ALL who achieved complete remission but were MRD positive after intensive chemotherapy prior to allogeneic stem cell transplantation. Daratumumab use was associated with eradication of residual disease after 3 to 4 doses, with disease-free survival of about 10 months. In a more recent case series of daratumumab in 20 patients with ALL including 13 with T-ALL with R/R or MRD positive disease after a median of 3 lines of therapy, overall response rate was 20% including MRD negative complete remission in 2 patients. One patient with high disease burden achieved a response when daratumumab was used in combination with chemotherapy. The median time to response in the overall cohort was 4 weeks and median survival was 4 weeks. Treatment was safe with no unexpected toxicities. Furthermore, the efficacy of daratumumab in CD38-positive B-ALL has also been demonstrated in a multiply relapsed pediatric patient with Philadelphia chromosome positive B-ALL, prior treatments included DLI, two allogeneic stem cell transplants and anti-CD19 CAR-T cells, who rapidly achieved morphological remission following initiation of daratumumab, together with weekly
vincristine and ponatinib.15 Whether the deep and durable remission achieved in our patient was due to daratumumab, brentuximab or combination of the two agents is unclear, although it is to be noted that our patient had previously received liposomal vincristine, which has a similar mechanism to brentuximab. To our knowledge, there are no reports for the use of brentuximab vedotin in T-ALL, but the expression of CD30 in a subset of patients with T-ALL provides a rationale for its evaluation in this setting. About one third of patients with T cell ALL may express CD30 with increased expression level following chemotherapy.11 Brentuximab may lead to worsening of preexisting peripheral neuropathy and prolonged cytopenias in heavily pretreated patients which may limit the duration of treatment or necessitate dose reductions as in our patient. Daratumumab is well tolerated and can be continued on a maintenance schedule (every 28 days). Large studies are needed to confirm the efficacy of this combination in the R/R setting and define the optimal doses, schedule, and treatment duration. Daratumumab in combination with chemotherapy is under investigation in relapsed/refractory pediatric and young adults with ALL (NCT03384654). Preliminary findings from twenty four patients enrolled on the phase 2 DELPHINUS study with daratumumab and vincristine, prednisone, PEG-asparaginase, and doxorubicin (VPLD) reinduction backbone, showed complete remission in 10 (41.7\%) at the end of cycle 1.16 We also await with interest the results of EA9213, a phase II study of Daratumumab-Hyaluronidase for Chemotherapy-relapsed/refractory minimal residual disease in T Cell ALL (\url{https://clinicaltrials.gov/ct2/show/NCT05289687}). To our knowledge this is the first report to demonstrate daratumumab with brentuximab vedotin combination as an effective and safe therapy in relapsed/refractory T-ALL. Additional studies are required to elucidate the possible synergistic mechanism of daratumumab and brentuximab.
References:

Figure legend:

Figure 1: Metabolic response by positron emission tomography (PET) scan showing changes over the course of therapy. (a) at diagnosis of T-cell ALL showing hypermetabolic anterior right chest wall mass and splenomegaly; and (b) after the first cycle of chemotherapy showing resolution of chest wall mass and improvement in splenomegaly.

Figure 2: Metabolic response by positron emission tomography (PET) scan showing changes over the course of therapy after relapse. (a) prior to starting treatment with daratumumab and brentuximab vedotin showing hypermetabolic retroperitoneal and axillary lymph nodes and splenomegaly with increased FDG avidity; and (b) after 1 cycle of daratumumab and brentuximab vedotin showing interval resolution of lymphadenopathy and decrease in the size of the spleen with normal uptake.

Figure 3: Bone marrow aspirate and core biopsy findings showing changes pre- and post-treatment with daratumumab (Dara) and brentuximab vedotin (BV). Sheets of blasts prior to Dara & BV on a) diagnostic bone marrow aspirate (Wright Giemsa, original magnification x 400), b) core biopsy (Hematoxylin and eosin, original magnification x 400), c) strong CD30 positivity (Immunohistochemistry, antibodies to CD30, original magnification x 400) and d) diffuse CD38 positivity on the blasts (Immunohistochemistry, antibodies to CD38, original magnification x 400); e) post-treatment bone marrow aspirate (Wright Giemsa, original magnification x 600), f) core biopsy in remission (Hematoxylin and eosin, original magnification x 100), g) negative CD30 stain (Immunohistochemistry, antibodies to CD30, original magnification x 400) and h) negative CD38 stain (Immunohistochemistry, antibodies to CD38, original magnification x 400).