A patient with minimal myeloma treatment who survived for 20 years

by Alenka Djarmila Behsen, Esten Nymoen Vandsemb, Tobias Schmidt Slørdahl, Henrik Hjort-Hansen, Petter Quist-Paulsen, Kristine Misund, Anne-Marit Sponaas, and Anders Waage

Received: June 14, 2023.
Accepted: September 26, 2023.

Publisher's Disclaimer. E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
A patient with minimal myeloma treatment who survived for 20 years

Running title: Multiple myeloma patient with 20-year survival

Alenka Djarmila Behsen\(^1\)*, Esten Nymoen Vandsemb\(^1\)*, Tobias Schmidt Slørdahl\(^1,2\), Henrik Hjorth-Hansen\(^1,2\), Petter Quist-Paulsen\(^1,2\), Kristine Misund\(^1,3\), Anne-Marit Sponaas\(^1\), Anders Waage\(^1,4\)

\(^1\)Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
\(^2\)Department of Hematology, St. Olavs Hospital, Trondheim, Norway.
\(^3\)Department of Medical Genetics, St. Olavs Hospital, Trondheim, Norway.
\(^4\)Biobank1, St. Olavs Hospital, Trondheim, Norway.
*ADB and ENV contributed equally as co-first authors.

Corresponding author:
Alenka Djarmila Behsen, M.Sc.
Email: alenka.d.behsen@ntnu.no

Author contributions
ADB, ENV, AMS, and KM performed research and data analysis. AW, ADB, ENV, and AMS wrote the manuscript. AW, TSS, HHH, and PQP treated the patient.

Disclosures
TSS: Honoraria for lectures and educational material (Takeda, Celgene, Amgen, Janssen-Cilag), consultancy (Bristol Myers Squibb, GSK), and advisory board consultancy (Amgen, Celgene, GSK, Janssen-Cilag). ADB, ENV, HHH, PQP, KM, AMS, and AW have no disclosures to report.

Data-sharing statement:
The data that support the findings of this study are available on request from the corresponding author.
In this paper we describe a patient who lived for 20 years after a strategy of minimal myeloma treatment. If treated according to current treatment algorithms, this patient had been heavily overtreated and might have felt a pressure to accept side effects without any benefit. With this case report we want to focus on the risk of overtreatment of myeloma patients.

Since 2000 approximately 15 new drugs have been approved for multiple myeloma (MM) and combinations of drugs have been moving from double to triple and now quadruple combinations. Furthermore, additional treatment strategies include consolidation therapy, maintenance therapy and sequencing of regimens. Survival has approximately doubled in population-based studies and today, long lasting remission is a highly realistic expectation for younger myeloma patients. In addition, bispecific antibodies and CAR T-cell treatment will be added to the armamentarium and may further increase expectations. MM demonstrates considerable variation in overall survival (OS). Despite this, treatment principles have been largely similar except for autologous stem cell transplant (ASCT) and adaption of treatment to frail and high-risk patients. This is a concern because it is very unlikely that the same treatment principles are optimal for patients with life expectancy of 3 months and 20 years, and good predictive markers for treatment effect are lacking.

A 50-year-old man was referred to hospital in 1999 with back stiffness and lack of energy. Tests showed IgG 59.6 g/L in serum, no light chains in urine and normal values of hemoglobin, creatinine and calcium. He had osteolytic lesions in the skull, th8 and os pubis. Performance status was estimated to be WHO 2. Bone marrow (BM) aspirate showed 45% plasma cells and he was diagnosed with MM. An overview of treatment and responses is given in Figure 1. His first ASCT, given with vincristine, adriamycin, dexamethasone (dex) induction and high-dose melphalan (HDM), produced a complete remission. Maintenance treatment was given with interferon alpha for 9 months within a clinical trial. M protein reappeared in serum after 4 years, reaching 5 g/L (progressive disease) after 5 years. A second ASCT was given 7 years after diagnosis when back pain and small osteolytic lesions appeared. He obtained partial remission and stopped treatment, whereafter M protein started to rise slowly. Next relapse 4 years later was treated with bortezomib to which he did not respond. Treatment was changed to lenalidomide (len) based therapy. Altogether four separate treatment sequences were given. Treatment was continued as long as the M protein declined and was stopped as soon as the M protein leveled off. After termination of treatment, M protein began to rise, and new treatment was started when the patient experienced relevant symptoms or CRAB criteria. He had side effects grade 1-2 which disappeared every time he stopped with len. The patient accepted to have growing indolent myeloma without treatment, and we had no defined level of M protein that prompted us to start treatment. Altogether, he was sensitive to intermittent treatment with len for a period of 77 months (Figure 1) which also included 44 months of treatment-free intervals. During the 4th len based therapy, M protein rose during treatment, demonstrating resistance. Daratumumab was administered, but after approximately 4 months with SD as best response, the M protein level increased during treatment. Pomalidomide was chosen as the next drug to which he was sensitive for 10 months. The disease had now changed character and the tumor became more rapidly growing. He had still significant responses to CTD and carfilzomib-cyclophosphamide lasting altogether for 12 months. However, the patient was at this point increasingly frail and fatigued, and he decided to discontinue cancer-targeted therapy. The patient passed away 20 years after being diagnosed with MM. Altogether, he
had active myeloma therapy for 6.5 years and was off myeloma drugs for 13.5 years. He received triplet myeloma drug treatment including one of the novel drugs for 10 months and otherwise doublet therapy including steroids. He developed immunoparesis (suppression of normal polyclonal immunoglobulins) after 10 years and had increasing problems with bacterial infections. Altogether, he was mostly wellbeing (WHO 0-2) and had a physically active life in 18 of the 20 years with MM.

To determine the status of the tumor microenvironment (TME) in this patient with intermittent treatment and an indolent tumor we analyzed four BM aspirates that were taken, fractionated and frozen 13, 16 and 19 (two samples) years after diagnosis. Their relation to treatment and disease status can be seen from Figure 1 (BM1-4).

Exome sequencing revealed a hyperdiploid tumor. Transcriptional analysis of CD138-positive tumor cells showed that the tumor remained stable until the last sample (BM4) when the proliferative index increased (Figure 2A). Mass cytometry analysis of the CD138-negative cells showed that the proportion of T cells (CD3+) was similar in BM1-3, but a drop was seen during the last two months before death (BM4) (Figure 2B). We also found that the CD4/CD8 ratios were not markedly different in BM1-3, whereas the ratio increased in BM4 (Figure 2B). We found no increase in the myeloid CD11b+CD14+HLA-DR- population in BM4 (data not shown). An increased proportion of T regulatory CD4 (T_{reg}) cells was found at that time point (Figure 2C), as well as elevated proportion of exhausted CD4 T cells (Figure 2E). There was no increase in proportions of exhausted and senescent CD8 T cells in BM4 (Figure 2D). A slight increase of TCF1+ memory CD8 and CD4 T cells was seen in the last sample (BM4) (Figure 2F,G). TCR sequencing showed comparable clonality until BM4 where the hyperexpanded T cell clones disappeared with a concurrent decrease in clonality (Figure 3A,B). Clonotype tracking revealed that the 10 most expanded TCR clones in BM1 remained relatively stable in BM1-3 but diminished or disappeared in BM4 (Figure 3C).

In summary, the T cells in the TME remained relatively stable in the period 13-19 years after diagnosis and we anticipate that this was the case also prior to the first BM sample. Two months before death (BM4), considerable changes in T cell populations appeared with increase in the CD4/CD8 ratio, T_{reg} cells and exhausted CD4 T cells, as well as disappearance of hyperexpanded T cell clones and loss of clonality, indicating a shift in the T cell environment at this stage. Similar changes have previously been described in patients with advanced disease. This coincided with transcriptional changes with increase in PI. However, these data suggest that the tumor expansion seen in the last couple of months of the patient's life was not associated with an increase in senescence or exhaustion in CD8 T cells or drop in TCF1+ memory T cells. Generally speaking, T cell immunity is important for controlling tumor growth. Changes in the TME coincided with deterioration of the disease, however, at present we can only speculate on the causal relationship between these events.

Immunoparesis is commonly seen in MM demonstrating a serious deficiency in B cells producing normal immunoglobulins. This occurred 10 years prior to deterioration of the T cell system in the patient, indicating that the disease-induced changes in these two components of the immune system may not be coupled.

Myeloma treatment has definitely improved but is still hampered by the lack of cure. Even bispecific antibodies and CAR T-cells have yet to prove this efficiency. In the meantime, we have to face the challenging task of treating residual indolent disease with the aim to
prolong survival without unacceptable side effects. Over time it has clearly been a tendency to intensify treatment with triplet and quadruplet drug combinations prolonged by consolidation and maintenance. This has partly been motivated by a strong wish to remove the last myeloma cell. However, we should discern between the two very different treatment aims of cure and chronic disease. For the great majority of patients, chronic disease is still the most realistic treatment goal that often entails several years with a high quality of life. We should strive to give these patients optimal, not maximal, treatment. Prevention of serious myeloma events to occur has been a concern arguing for early treatment and prolongation of treatment. This cannot be totally neglected; however, it should not overrule all our considerations.

Although only a case study, this patient demonstrates that there is a group of patients that at best have a marginal effect of continuous and combinatory treatment. Promoting personalized medicine, we should aim to avoid treatment that is not needed, and this aspect deserves a greater research focus in future clinical trials. MRD negativity is emerging as an excellent marker of good prognosis and may serve as a reasonable basis of selection to such studies. Discontinuation-studies have successfully been carried out in other blood cancers such as chronic myelogenous leukemia and are highly relevant to MM.
References

Legend to figures

Figure 1. M protein (IgG) in serum from peripheral blood as measured by protein electrophoresis. Treatments including duration of therapy are noted at the top of the figure. ASCT here refers to VAD + high-dose therapy (melphalan) + ASCT. Abbreviations: ASCT, autologous stem cell transplantation; VAD, vincristine + doxorubicine + dexamethasone; IFNα, interferon alpha; Btz, bortezomib; MPL, melphalan + prednisone + lenalidomide; Ld, lenalidomide + dexamethasone; Dara, daratumumab; Pom, pomalidomide; CTD, cyclophosphamide + thalidomide + dexamethasone; Carf, carfilzomib; cyclo, cyclophosphamide.

Figure 2. Investigation of the patients’ tumor microenvironment by bulk and single-cell analysis. (A) Proliferative index of the CD138-positive tumor cells as found by bulk RNA sequencing. (B-G) Single-cell mass cytometry using a custom 37-marker panel was performed on CD138-negative cells from the patient’s bone marrow (BM). Gating was performed to investigate percentages of different immune cell populations across BM1-4. (B) Proportions of T cell (CD3), B cell (CD20), myeloid (CD14) and NK cell (CD56) populations in the live CD45+ cell compartment, and proportions of CD8 and CD4 T cells in the T cell compartment (bottom). (C) Percentage of regulatory T (Treg) cells (CD4+FoxP3+CD25+) in the T cell compartment. (D,E) Percentage of exhausted (Eomes+PD1+TIGIT+) and senescent (CD45RO-CD57+) CD8 (D) and CD4 (E) T cells in the T cell compartment. (F,G) Percentages of different CD8 memory T cell (F) and CD4 memory T cell (G) populations in the CD8 and CD4 T cell compartment, respectively. Central memory T (Tcm) cells (CD45RO+CD27+), effector memory T (Tem) cells (CD45RO+CD27-), resident memory T (Trm) cells (CD45RO+CD103+), and TCF1+ memory T cells (CD45RO+TCF1+).

Figure 3. Hyperexpanded T cells, clonality, and clonotype tracking of the patient’s T cells. TCRβ sequencing of CD138-negative cells was performed across samples BM1-4. (A) Abundance of hyperexpanded T cell clones, that is clones making up 1% or more of all TCRβ sequences. (B) Productive clonality of T-cell receptors (TCRs) as measured by the Simpson index, where a higher value indicates a more monoclonal TCR repertoire, and a lower value indicates a more polyclonal TCR repertoire. (C) Tracking of the top 10 clonotypes in BM1 across BM1-4.