Colchicine reduces inflammation in a humanized transgenic murine model of sickle cell disease

by Raghda T. Fouda, Hemanth M. Cherukury, Stacy B. Kiven, Natalie R. Garcia, Donovan A. Argueta, Graham J. Velasco, Kalpna Gupta, and John D. Roberts

Received: May 3, 2023.
Accepted: July 28, 2023.


Publisher’s Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors’ final approval; the final version of the manuscript will then appear in a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
Letter to the Editor

Colchicine reduces inflammation in a humanized transgenic murine model of sickle cell disease

Authors

Raghda T. Fouda¹, Hemanth M. Cherukury¹, Stacy B. Kiven¹, Natalie R. Garcia¹, Donovan A. Argueta¹, Graham J. Velasco², Kalpna Gupta¹,³*, John D. Roberts⁴*

¹Hematology/Oncology, Department of Medicine, University of California, Irvine, CA, USA; ²Pathology Department, VA Long Beach Medical Center, Long Beach, CA; ³Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA; ⁴Yale University

Correspondence: JDR and KG provided equal contributions.
*John D Roberts, MD, 362 Whitney Ave Unit 1B, New Haven CT 06511; email: john.d.roberts@yale.edu.
*Kalpna Gupta, PhD; email kalpnag@hs.uci.edu.

Disclosures
Conflict-of-interest disclosure: KG has received honoraria from Novartis, CSL Behring, and research grants from Cyclerion, 1910 Genetics, Novartis, Grifols, Zilker LLC, UCI Foundation, SCIRE Foundation. DAA has received honoraria from Cyclerion, Cayenne Foundation. JDR has been a consultant for VeriMed Healthcare Network, Pfizer, Magellan. Other authors declare no competing financial interests.

Contributions
RTF conducted experiments, mast cell staining and analysis, analyzed data, prepared the data for publication, prepared figures and visual abstract; HMC conducted hyperalgesia experiments; SBK bred, phenotyped and prepared sickle mice; NRG conducted the ELISA assays; DAA participated in experimental design and cytokine analysis; GJV histopathology; KG participated in experimental design, supervision of the study, data analysis and interpretation and manuscript editing; JDR proposed the study, participated in the experimental design and interpretation of results, and wrote the manuscript.

Data-sharing statement
Original data can be made available on reasonable request to a corresponding author.

Funding
Supported by NIH Grant R01 HL147562 and Susan Samueli Integrative Health Institute Scholar Award to KG, Diversity Supplement R01HL147562-03S to SBK, University of California President’s and Gianini Foundation Post-Doctoral Fellowship to DAA; ASH Graduate Hematology Award to HMC; and institutional funds to JDR. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Sickle cell diseases (SCD) are caused by a mutation in the β-globin gene that causes deoxygenated hemoglobin to polymerize, resulting in rigid, fragile, sickle-shaped red blood cells. Prominent clinical features are hemolytic anemia; hyperalgesia; chronic and acute pain; wide-spread organ damage; and premature death (USA median age ~ 50 years). SCD pathobiology involves oxidative stress, ischemia/reperfusion injury, and activation of the innate immune system with sterile inflammation and “cytokine storm”. Inflammation in SCD is chronic with acute exacerbations, and complex with many cellular and molecular components. Among these, mast cell activation and interleukin 6 (IL-6) and C-reactive protein (CRP) are chronically and acutely increased in SCD. CRP contributes to inflammation through the activation of the complement system, a component of innate immunity. CRP has been used to monitor both disease activity and response to therapy in many inflammatory conditions involving both innate and acquired immunity.

Colchicine is a drug used for the treatment or prevention of symptoms of gout and other non-infectious inflammatory conditions. Recently, it has been shown to improve outcomes in atherosclerotic cardiovascular disease (ASCVD) in which, like SCD, inflammation is a secondary pathological process. Colchicine effects in ASCVD and other conditions include reductions in IL-6 and CRP. Among 5 selected agents or agent-classes of anti-inflammatory drugs – colchicine, non-steroidal anti-inflammatory drugs, corticosteroids, canakinumab, and imatinib -- only colchicine has been shown to inhibit each of 4 selected inflammatory mechanisms – inflammatory cytokines, inflammasomes, mast cell activation, and neutrophil adhesion and superoxide release. Among the 5 anti-inflammatory agents or agent classes, only colchicine is a tubulin inhibitor (TI). Among TIs, colchicine has unique properties. Tubulin is a dynamic structural protein, and TIs are classified as stabilizers (sTI) or destabilizers (dTII). dTIs are associated with 5 binding sites named by an agent or agent class: colchicine, taxanes, laulimalide, epothilones, and vinca alkaloids. Among TIs, only colchicine is used as an anti-inflammatory agent, with all others targeted to various types of cancer.

We hypothesized that colchicine might reduce inflammation and improve the clinical course of SCD. We sought evidence for this by examining the effect of colchicine on inflammation in the HbSS-BERK humanized transgenic mouse model of SCD. These sickle mice are knockout for murine α and β globins and express human α and β (>99% of total β) globins on a mixed genetic background. They have severe disease with hyperalgesia, inflammation, extensive organ damage, and pathology consistent with SCD; in contrast, HbAA-BERK mice that express normal human α and β globins do not exhibit hyperalgesia or organ pathology. Only female mice were studied; as male mice are fragile with less tolerance to experimental manipulations, rendering them unsuitable for this sort of study.

Female ~4-month-old mice were treated with colchicine 100 µg/kg body weight (Tocris Bioscience, Bristol, United Kingdom) or vehicle (phosphate-buffered saline) intraperitoneally once daily for 14 days. Hyperalgesia testing was performed at 1-h and 24-h after the 1st treatment and on day 7 and day 14. Then mice were humanely euthanized; blood was collected by cardiac puncture; and 4 mm diameter dorsal skin punch biopsies were collected for mast cell analysis or incubated in culture media for 24 h to analyze secreted inflammatory cytokines. All experiments were performed following protocols approved by the Institutional Animal Care and Use Committee. Data were analyzed using GraphPad Prism software version 9.3.1 (GraphPad Prism Inc., San Diego, CA).

Serum amyloid protein (SAP) is a murine acute-phase reactant with extensive (60%-70%) sequence homology with human CRP; it is commonly used as a surrogate for CRP in mouse studies. Consistent with our hypothesis, plasma IL-6 levels were ~67% lower (~130 v ~48 µg/g
protein; p<0.01), and plasma SAP levels were ~45% lower (~33 v ~18 µg/g protein; p<0.01) in colchicine-treated mice compared to vehicle (Figure 1A).

Consistent with our observations of reduced systemic inflammation with colchicine treatment, we observed that skin-conditioned media from colchicine-treated mice showed significantly reduced levels of 3 proinflammatory cytokines compared to skin-conditioned media from vehicle-treated mice: granulocyte-macrophage colony-stimulating factor (GM-CSF), 40% reduction (p<0.05); interleukin 3 (IL-3), 40% reduction (p<0.01); and interferon gamma (IFN gamma), 20% reduction (p<0.05) (Figure 1B). Of note, GM-CSF can antagonize the therapeutic increase in fetal hemoglobin expression caused by hydroxyurea (HU), the most effective SCD disease-modifying drug (DMD). Thus, colchicine-induced reduction in GM-CSF might enhance HU effectiveness. Conditioned media levels of the anti-inflammatory cytokine interleukin 10 were reduced by 20% (p<0.05). We speculate that this reflects down-regulation of the inflammatory loop that stimulates interleukin 10 production. Conditioned media cytokine levels not affected by colchicine were interleukin 1 (IL-1) alpha, interleukin 1 beta, interleukin 2, interleukin 4, interleukin 5, IL-6, interleukin 12, interleukin 17, monocyte chemoattractant protein 1, tumor necrosis factor alpha, macrophage inflammatory protein-1 alpha, and regulated on activation, normal T-cell expressed and secreted protein. All of these are elevated in human SCD plasma, but we have no human SCD plasma samples from patients exposed to colchicine for comparison.

Previous studies in sickle mice indicate that disease-associated mast cell (MC) activation results in the release of substance P, tryptase, and multiple inflammatory cytokines from skin and dorsal root ganglia that leads to neurogenic inflammation and nociceptor activation. Colchicine reduced skin MC degranulation by ~ 75% (p<0.0001), and we attribute reductions in GM-CSF, IL-3, and IFN gamma to this effect (Figure 2).

We did not observe changes in circulating blood cell parameters (see Supplement Figure 1). Although colchicine can cause myelosuppression, it does not cause significant myelosuppression in SCD or other conditions at currently recommended clinical doses. We also did not observe changes in hyperalgesia (Supplement Figure 2). Given the chronic nature of inflammation and tissue damage in SCD, we speculate that starting colchicine treatment in younger mice and continuing dosing for a longer interval might attenuate the development of inflammation and consequent organ damage.

The current SCD drug armamentarium is inadequate, and introduction of a drug that targets SCD inflammation might improve outcomes. Although the four DMD approved in the USA for the treatment of SCD -- hydroxyurea, voxelotor, L-glutamine, and crizanlizumab -- have some secondary anti-inflammatory effects, significant inflammation persists in persons with SCD despite taking one or more of these drugs. Non-steroidal anti-inflammatory agents are commonly used to treat pain in SCD, but they have not been shown to have disease-modifying effects in SCD. For unclear reasons, corticosteroids have mixed effects, and in general are avoided. In a small trial, the anti-IL-1 beta antibody, canakinumab, showed a nominal reduction in CRP and trends toward improvement in multiple clinical endpoints, but none of these were statistically significant, and the indication has not been pursued.

We are aware of only one other study of colchicine in SCD, in which colchicine was shown to attenuate inflammation and cardiac damage in a transgenic mouse model.

Reduced inflammation due to colchicine treatment might result in reduced pain, preservation of end-organ function, and prolonged survival in SCD. As colchicine has a unique mechanism of
action and minimal side-effects at currently recommended clinical doses, patients might benefit from combination of colchicine with one or more of the established DMDs. Further research is warranted.

References

Figure legends

Figure 1: Colchicine attenuates inflammation in sickle mice. Female HbSS-BERK sickle mice were treated daily with 100 µg/kg/d colchicine or vehicle (phosphate-buffered saline). After 14 days of treatment, mice were euthanized, blood collected, and punch biopsies of dorsal skin were incubated in culture media for 24 hours. Data are expressed as mean ± standard error of the mean (SEM). (A) Plasma interleukin 6 and serum amyloid protein in vehicle- and colchicine-treated mice. (B) Concentrations in skin-conditioned media of interleukin (IL) 1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-10, IL-12, IL-17, monocyte chemoattractant protein 1, tumor necrosis factor alpha, macrophage inflammatory protein-1 alpha, and regulated on activation, normal T-cell expressed and secreted protein as percentage of vehicle-treated control. Cytokines were analyzed using a microplate-based array (Quansys Biosciences, Logan, UT, USA), a sandwich ELISA in microscale. Data expressed as colchicine-treated as percent of control.

Figure 2: Colchicine inhibits mast cell (MC) degranulation in the skin of transgenic humanized sickle mice. (A) Black arrow: degranulated MC (B) yellow arrow: intact MC. Toluidine blue stain was prepared by dissolving 0.25 g toluidine blue (Sigma-Aldrich) in 35 ml distilled water, 15 ml ethanol 100%, and 1 ml HCL. After deparaffinization, the skin sections were incubated in toluidine blue for 1 min at room temperature, washed with distilled water, and air-dried. The stained specimens were observed under an Olympus Microscope BH-2. MC were recognized by red-purple metachromatic staining color on a blue background. MC were counted in 20 fields, 4 fields per slide, and expressed as total mast cell number, number of degranulated mast cells, and percentage of degranulated cells. Degranulated mast cells were defined as cells associated with ≥ 8 granules outside the cell membrane. Analyzed with unpaired t-test, two-tailed in GraphPad Prism software; p ≤ 0.0001; one outlier in the colchicine treated cohort was detected by Grubbs’ test.
Colchicine reduces inflammation in a humanized transgenic murine model of sickle cell disease

Supplement

Supplement Figure 1

Supplement Figure 1. Colchicine did not alter circulating blood cell parameters.

Whole blood was combined with 100 mM EDTA pH 7.5 at a 2:1 ratio and assayed immediately for red blood cells (RBC), RBC indices, hemoglobin, platelets, and leukocytes with differential using an automated cytometer (VetPlus, Viernheim, Germany). Leukocyte differential was confirmed by review of Wright-stained (Wright Stain Solution, Sigma Aldrich, St Louis, MO, USA) peripheral blood smears. Equal volumes of blood and reticulocyte stain (Sigma Aldrich, St Louis, MO, USA) were mixed and incubated for 15 minutes at room temperature; microscopic slides were prepared for enumeration of RBC and reticulocytes (red cells containing purple inclusions or filaments). Equal volumes of blood and 2% sodium metabisulfate (Sigma Aldrich, St Louis, MO, USA) were gently mixed and incubated for 25 minutes at room temperature; then fixed with an equal volume of formalin buffer (Fisher Scientific, Hampton, NH, USA). A drop of the fixed blood was placed on a slide, covered with a cover slip, sealed with nail varnish, and allowed to stand at room temp for 1 to 4 hours. The slides were examined microscopically for enumeration of sickled and total RBC.
Supplement Figure 2. Colchicine did not alter hyperalgesia.

Hyperalgesia testing was performed at 1 hour and 24 h after the 1st dose of treatment and on days 7 and day 14. Hyperalgesia was analyzed after acclimatizing the mice in a quiet room at constant temperature for 30 mins. An interval of 15 min was maintained between testing for mechanical, deep tissue/musculoskeletal, and cold hyperalgesia. Data represent the mean and SEM from three trials each. (A) Mechanical hyperalgesia: Mice were placed into glass enclosures (10 × 6.5 × 6.5 cm) on an elevated wire mesh. A von Frey monofilament (Stoelting Co, Wood Dale, IL, USA) with 9.8 mN (1.0 g) calibrated bending force was applied to the mid-plantar surface of the hind paws and the paw withdrawal frequency (PWF) upon 10 applications was measured per hind paw. (B) Musculoskeletal/deep tissue hyperalgesia: Each mouse was held by its tail and allowed to grip the wires on a square grid. The peak tensile force exerted by the forelimb prior to grip release was measured using a computerized grip force meter (Columbus Instruments, OH, USA). The peak force exerted was recorded in grams and normalized by body weight. (C) Cold
hypalgesia: Mice were gently placed onto a cold plate (Ugo Basile, Stoelting, Wood Dale, IL, USA, cat. no. 55100) maintained at ~4°C and the PWF during a 2 min period was recorded.