Metabolic signatures of cardiorenal dysfunction in plasma from sickle cell patients as a function of therapeutic transfusion and hydroxyurea treatment

Received: April 5, 2023.
Accepted: June 30, 2023.

Publisher’s Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors’ final approval; the final version of the manuscript will then appear in a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
Metabolic signatures of cardiorenal dysfunction in plasma from sickle cell patients as a function of therapeutic transfusion and hydroxyurea treatment

Angelo D’Alessandro1,2,* S. Mehdi Nouraie,3 Yingze Zhang,3 Francesca Cendali,1 Fabia Gamboni,1 Julie A. Reisz,1 Xu Zhang,4 Kyle W. Bartsch,5,6 Matthew D. Galbraith,5,6 Joaquin M. Espinosa,5,6,7 Victor R. Gordeuk,4 Mark T. Gladwin8,*

1) Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
2) Department of Medicine – Division of Hematology, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
3) Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pennsylvania, USA.
4) Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.
5) Linda Crnic Institute for Down Syndrome, University of Colorado – Anschutz Medical Campus, Aurora, CO, USA
6) Department of Pharmacology, University of Colorado Anschutz Medical Campus
7) School of Medicine Information Services, University of Colorado Anschutz Medical Campus
8) University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA.

*Correspondence:
Angelo D’Alessandro, PhD
Department of Biochemistry and Molecular Genetics
University of Colorado Anschutz Medical Campus
12801 East 17th Ave., Aurora, CO 80045
Phone # 303-724-0096
E-mail: angelo.dalessandro@ucdenver.edu

Mark T. Gladwin, MD PhD
Dean, University of Maryland School of Medicine;
Vice President for Medical Affairs,
John Z. and Akiko K. Bowers Distinguished Professor
University of Maryland, Baltimore, MD, USA
Phone: # 410-706-7410;
E-mail: mgladwin@som.umaryland.edu

Running title: Plasma metabolome in SCD

Clinical Trial Details Patients were recruited as part of the Walk-PHaSST clinical trial (NCT00492531 at ClinicalTrials.gov and HLB01371616a BioLINCC study) under protocols approved by the University of Pittsburgh

Acknowledgments AD was supported by funds by the National Institute of General and Medical Sciences (RM1GM131968), and from the National Heart, Lung, and Blood Institute (R01HL146442, R01HL149714, R01HL148151, R01HL161004). MTG receives research support from NIH grants 5R01HL098032, 2R01HL125886, 5P01HL103455, 5T32HL110849, and UH3HL143192. This work was supported by UH3HL143192. JME was supported by the National Institute of Allergy and Infectious Diseases (R01AI50305) and the Global Down Syndrome Foundation. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Authors’ contributions SMN, YZ, VG, MTG designed and executed the WALK-PHASST study, collected and stored the samples, performed clinical measurements. FC, FG, JAR, AD performed metabolomics analyses (untargeted and targeted quantitative). KB, MG and JME built the SCD
Plasma metabolome in SCD

metabolome portal. AD performed data analysis and prepared figures and tables. AD wrote the first draft of the manuscript, which was revised by all the other authors. All the authors contributed to finalizing the manuscript.

Disclosure of Conflict of interest The authors declare that AD is a founder of Omix Technologies Inc. and Altis Biosciences LLC. AD is also a consultant for Hemanext Inc and Macopharma Inc. MTG is a co-inventor of patents and patent applications directed to the use of recombinant neuroglobin and heme-based molecules as antidotes for CO poisoning, which have been licensed by Globin Solutions, Inc. MTG is a shareholder, advisor, and director in Globin Solutions, Inc. MTG is also co-inventor on patents directed to the use of nitrite salts in cardiovascular diseases, which were previously licensed to United Therapeutics, and is now licensed to Globin Solutions and Hope Pharmaceuticals. MTG is a principal-investigator in this investigator-initiated research study with Bayer Pharmaceuticals to evaluate riociguat as a treatment for patients with SCD. MTG has previously served on Bayer HealthCare LLC’s Heart and Vascular Disease Research Advisory Board and previously on the Forma Therapeutics scientific advisory board. All the other authors disclose no conflicts of interest relevant to this study. JME has provided consulting services for Elli Lily and Gilead Sciences and serves in the advisory board of Perha Pharmaceuticals.

Data sharing statement All the data generated in this study are available in Supplementary Table 1 and interactively accessible through the ad hoc data portal https://mirages.shinyapps.io/SCD2023/
Plasma metabolome in SCD

Abstract

Metabolomics studies in sickle cell disease (SCD) have been so far limited to tens of samples, owing to technical and experimental limitations. To overcome these limitations, we performed plasma metabolomics analyses on 596 samples from patients with sickle cell sickle cell disease (SCD) enrolled in the WALK-PHaSST study. Clinical covariates informed the biological interpretation of metabolomics data, including genotypes (hemoglobin SS, hemoglobin SC), history of recent transfusion (HbA%), response to hydroxyurea treatment (HbF%). We investigated metabolic correlates to the degree of intravascular hemolysis, cardiorenal function, as determined by tricuspid regurgitation velocity (TRV), estimated glomerular filtration rate (eGFR), and overall hazard ratio (unadjusted or adjusted by age). Recent transfusion events or hydroxyurea treatment were associated with elevation in plasma free fatty acids and decreases in acyl-carnitines, urate, kynurenine, indoles, carboxylic acids, and glycine- or taurine-conjugated bile acids. High levels of these metabolites, along with low levels of plasma S1P and L-arginine were identified as top markers of hemolysis, cardiorenal function (TRV, eGFR), and overall hazard ratio. We thus uploaded all omics and clinical data on a novel online portal that we used to identify a potential mechanism of dysregulated red cell S1P synthesis and export as a contributor to the more severe clinical manifestations in patients with the SS genotype compared to SC. In conclusion, plasma metabolic signatures – including low S1P, arginine and elevated kynurenine, acyl-carnitines and bile acids - are associated with clinical manifestation and therapeutic efficacy in SCD patients, suggesting new avenues for metabolic interventions in this patient population.

Keywords: Sickle cell; hemoglobin S; hemolysis; chronic kidney disease; transfusion;
INTRODUCTION

Sickle cell disease (SCD) encompasses a group of inherited hemoglobinopathies caused by mutations in the gene coding for the beta globin chain (HBB) in the hemoglobin tetramer.(1, 2) These mutations result in the substitution of single amino acid residue, E6 to V in sickle Hb (HbS) allele βS, or E6 to K in HbC. Under deoxygenated conditions, sickling of red blood cells (RBCs) occurs following crystallization of mutant globins into macrofibers,(3-5) which in turn disrupts erythrocyte morphology, rheology(6) and metabolism.(7) Clinically, these molecular events manifest themselves in a complex disease characterized by hemolytic anemia, inflammation and recurrent vaso-occlusive episodes.(8) While such manifestations tend to be more severe in patients with the SS genotype, vaso-occlusive complications are still present in patients with the SC genotype.(2, 9)

Lifelong transfusion represent a mainstay in the management of SCD in children and adults.(8) Increases in circulating levels of heme and iron secondary to the elevated hemolytic propensity of sickle red blood cells (RBCs) triggers recurrent episodes of vaso-occlusion and inflammation, which progressively cause damage to most organs, including the kidneys, lungs, and the cardiovascular system, and overall reduced life expectancy.(8) Interventions based on treatment with hydroxyurea (hydroxycarbamide) have shown a certain degree of efficacy in up-regulating the expression of fetal hemoglobin (HbF) and increasing mean corpuscular volume (MCV),(10) while decreasing the frequency of pain episodes and other acute complications in adults and children with sickle cell anemia of SS or Sβ⁰thal genotypes, reducing the incidence of life-threatening neurological events such as primary stroke by maintaining transcranial Doppler velocities.(11)

The circulating metabolome offers a window not just on chemical individuality under healthy conditions(12), but also onto dysregulation of systems homeostasis under pathological conditions, such as in the case of SCD.(7) Studies on the circulating metabolome in SCD have identified potential new avenues for metabolic interventions. For example, arginine supplementation(13) has been proposed as a strategy to boost nitric oxide synthesis and NO-dependent vasodilation, thus counteracting hemoglobin-dependent NO scavenging secondary to intravascular hemolysis, and release of red cell arginase which has been shown to catabolize L-arginine.(13, 14) Similarly, hemolysis-derived free hemoglobin, heme and iron have been associated with increased renal, cardiopulmonary and infectious complications in this and other patient populations.(15, 16) An alternative metabolic intervention, glutamine supplementation has been proposed as a strategy to boost glutathione synthesis, thus counteracting oxidant stress in the sickle RBC.(17, 18) More recently, metabolomics interventions have been designed to boost the rate of late, payoff steps
enzymes of glycolysis such as pyruvate kinase. This strategy promotes the synthesis of adenosine triphosphate and energy metabolism in the sickle cell, while depleting the reservoirs of allosteric modulators like 2,3-diphosphoglycerate that promote sickling by stabilizing the tense deoxygenated state of hemoglobin. Other metabolomics studies have identified dysregulated adenosine signaling and sphingolipid metabolism as potential targets for therapeutic interventions, though studies have not progressed beyond promising pre-clinical animal models. One major limitation of almost all metabolomics studies of SCD plasma to date is that limited sample size and lack of extensively curated clinical data hampered the extrapolation of the translational relevance of the reported findings. To bridge this gap, here we performed a metabolomics study of plasma from 596 SCD patients, for which extensive information on patients’ demographics (sex, age, BMI), genotypes, hematological and clinical characteristics, as well as therapeutic interventions (transfusion events, as inferred from HbA %; hydroxyurea treatment) were available. Results from analyses in plasma were compared against the recently characterized RBC metabolome in this cohort, identifying compartment-specific metabolic signatures associated with potential novel strategies for metabolic interventions in SCD.
METHODS

An extended version of this section is provided in Supplementary Methods Extended, and our previous metabolomics report on RBC samples from the same cohort.(23)

Ethical statement, blood collection, processing and storage A total of 596 SCD patients with available plasma samples were recruited as part of the Walk-PHaSST clinical trial (NCT00492531 at ClinicalTrials.gov and HLB01371616a BioLINCC study) under protocols approved by the University of Pittsburgh(9, 24-28). Clinical covariates were collected prior to plasma metabolomics analysis, including intravascular hemolysis, tricuspid regurgitation velocity (TRV),(29) parameters indicative of kidney function such as estimated glomerular filtration rate (eGFR), creatinine.).(9, 24-28) Standard HPLC methods were used to determine the percentage of hemoglobin S (sickle - HbS), C (HbC), F (fetal - HbF) and A (alpha, normal - HbA).(9, 24-28)

Ultra-High-Pressure Liquid Chromatography-Mass Spectrometry (MS) metabolomics: Metabolomics extractions,(30, 31) analyses(32, 33) and elaborations(34) were performed as previously described.

Statistical analyses: Multivariate and multivariable analyses, including principal component analyses (PCA), hierarchical clustering analyses, two-way ANOVAs, correlation analyses (Spearman) and calculation of receiver operating characteristic (ROC) curves were performed using MetaboAnalyst 5.0.(35) For survival analysis, we used time to right censorship (including death or last follow-up) as time to event and vital status (death or alive) was the studied outcome. PCA was used to derive a hemolytic component from lactate dehydrogenase, aspartate aminotransferase, total bilirubin and reticulocyte percent.(27, 36, 37) We applied Cox proportional hazard models to calculate the hazard ratios and P value for each metabolite. Cox analysis and adjusted regressions of metabolites to clinical outcomes were performed in R (R Core Team (2022), https://www.r-project.org/).

Sickle Cell Disease ShinyApp portal A portal for online sharing of all the data generated in this study, based on code from the COVID-Ome Explorer portal.(38)

Data sharing statement All results described in this study are provided in Supplementary Table 1 and accessible at https://mirages.shinyapps.io/SCD2023/.
RESULTS

Metabolomics of the WALK-PHASST SCD cohort

Metabolomics analyses were performed on plasma samples from 596 sickle cell study participants in the screening phase of Walk-PHASST cohort (Figure 1.A). Results extensively reported in Supplementary Table 1, which also includes anonymized patients’ biological data, including genotype, sex, age, body mass index (BMI – Figure 1.A). An unsupervised analysis of the plasma metabolomics results is provided in Supplementary Figure 1. Principal component analyses (PCA) and hierarchical clustering analyses (HCA) of all the metabolomics data showed a significant separation of plasma samples from individuals with SS genotypes compared to the other groups (Supplementary Figure 1.A-B). As previously noted,(23) despite double randomization of the samples and blinding of the analytical team, plasma creatinine levels measured via mass spectrometry significantly correlated with clinical measurement for this metabolite (Supplementary Figure 1.C).

Plasma metabolic profiles in SS vs SC patients who have not been recently transfused

Individuals with SS genotypes represented ~73% of the cohort in this study and showed distinct clinical(9, 24-28) and metabolic phenotypes (Supplementary Figure 1) compared to patients with other genotypes. As such, the first analysis we performed focused on the SS patient population. Clinically, many of these patients are routinely transfused, which could be herein assessed by screening of HbA percentages. We used this intervention to all for an in vivo assessment of the metabolome of plasma from patients with high levels of HbS compared with patients with SS genotype who have very high levels of transfused AA blood as a control. For this first analysis, other treatments (e.g., hydroxyurea – see below) were excluded. HCA of plasma metabolites significantly affected by HbA and HbS levels in SS patients identified a significant increase in the levels of free fatty acids (palmitoleic, myristoleic, myristic, stearic, docosapentaenoic, arachidonic, dihomogammalinolenic and adrenic acid) as a function of high levels of HbA, as opposed to declines in a series of acyl-carnitines (5:0, 5:0 OH, 14:0; 16:1 – Figure 1.B). Elevated HbS levels were correlated (Spearman; p<0.05) with increases in urate, gluconolactone phosphate (a metabolite of the oxidative phase of the pentose phosphate pathway – PPP) and cystine, with decreases in the levels of pyruvate, choline and acetylcholine, on top of the aforementioned free fatty acids (Figure 1.C). To further evaluate the impact of recent transfusion events on the plasma metabolome of SS patients, data were binned into extremes HbA phenotypes, with two groups identified based on “no recent transfusion events” (HbA<5%) or “recent transfusion events” (HbA>80%) that showed distinct
metabolic phenotypes by partial least square-discriminant analysis (PLS-DA – Figure 1.D). Volcano plots of significant metabolites in these two groups further identified transfusion-associated elevation in pyruvate and other pentose or hexose phosphate compounds (fructose bisphosphate and ribose phosphate) – usually associated with hemolysis when observed in plasma, since they should only be detected in intracellular compartments - and decreases in indoles, acyl-carnitines (especially those derived from branched chain amino acid catabolism – 5:0 and 5:0 OH) and pyridoxamine (Figure 1.E).

Impact of hydroxyurea treatment on the plasma metabolome

Of the 433 patients with SS genotypes enrolled in this study, 306 had not been recently transfused (HbA <20%), of which 147 had received treatment with hydroxyurea (Supplementary Figure 2.A). Unsupervised analyses including PCA and HCA identified a modest impact of hydroxyurea treatment on the plasma metabolome, with the strongest impact on the levels of acyl-carnitines, urate, L-arginine and amino acids (lower in treated patients compared to untreated ones – Supplementary Figure 2.B-C). These effects were corroborated by correlation with HbF %, which increased after hydroxyurea treatment and was also positively associated with elevated tryptophan and indole metabolites (indole, indole acetate – Supplementary Figure 2.D). Linear models, unadjusted or adjusted by HbF% confirmed a strong impact of hydroxyurea on plasma L-arginine, acyl-carnitines and amino acids (Supplementary Figure 2.E). Acknowledging the limited signal emerged from this analysis, perhaps as a result of uncertain adherence to the hydroxyurea regimen, we performed an additional analysis by focusing on SS patients on hydroxyurea with mean corpuscular volumes (MCV) > 105 (Supplementary Figure 2.F), owing to the well-established effect on this hematological parameter of hydroxyurea treatments.(10) This analysis unmasked a signal related with hydroxyurea-dependent decrease in circulating levels of some long-chain acyl-carnitines, but not conjugated bile acids – still elevated in this subgroup of patients compared to the untreated group (Supplementary Figure 2.G).

Comparison of SS patients to less clinically severe SC genotypes show trends consistent with beneficial effects of transfusion and hydroxyurea

We then performed a direct comparison of non-recently transfused SS patients to the metabolome of patients with less clinically severe genotype of SC (Figure 2.A). Linear models identified alterations of sphingolipid metabolism (especially sphingosine 1-phosphate, S1P and sphinganine 1-phosphate), methionine sulfoxide, phosphocreatine and PPP metabolites (gluconolactone phosphate and ribose
Plasma metabolome in SCD
diphosphate) as the top markers distinguishing SS and SC patients, even upon adjustment for HbA% (Figure 2.B). These findings were corroborated by HCA, which also showed enrichment in SS plasma of acyl-carnitines, taurine- and glycine-conjugated bile acids (taurodexyholate, taurocholate, taurochenodeoxycholate, tauroliothocholate, glycocholate, glycochenodeoxycholate), carboxylic acids (succinate, malate, oxaloacetate), purine deamination products (urate, hydroxisourate), as opposed to depletion in L-arginine and S1P (Figure 2.C). These findings were further highlighted by the identification of metabolic correlates to HbC % (Figure 2.D), the top of which presented in the form of violin plots in Figure 2.E.

Plasma metabolic markers of intravascular hemolysis in the SS SCD population
Degree of intravascular hemolysis was most elevated in SS patients with the more severe clinical manifestations. Analysis of metabolomics data as a function of the degree of hemolysis were thus performed in non-recently transfused (HbA<20%) SS patients via PCA, HCA and correlation analysis (Figure 3.A-C). Results indicate a strong positive correlation of hemolysis with circulating levels of conjugated bile acids, urate, acyl-carnitines, free fatty acids, pentose and hexose phosphate metabolites, carboxylic acids (succinate, malate) and a negative correlation with free amino acids, especially L-arginine and tryptophan metabolites (e.g., kynurenine). Similar results were even more evident in Supplementary Figure 3, in which we focused on the top 30 patients with highest and lowest overall hemolysis, without constraining for patients’ genotypes nor for recent transfusion events.

Plasma metabolic correlates to Doppler-echocardiographic tricuspid regurgitation jet velocity (TRV) in the WALK-PHaSST cohort
Cardiorenal dysfunction secondary to elevated hemolysis are common comorbidities in SCD, especially in patients with SS genotypes.(13, 28) Altered TRV is a hallmark of pulmonary dysfunction in this patient population, though plasma metabolic markers of aberrant TRV have not yet been reported, and is the focus of the analysis in Figure 4. Focusing on non-recently transfused (HbA<20%) SS patients, PCA, HCA, linear models (unadjusted, or adjusted for relevant covariates of patients’ age and sex) and correlation analyses all highlighted a significant correlation to TRV for plasma levels of S1P, L-arginine and tryptophan (depleted with high TRV) and their catabolites (citrulline, creatinine, kynurenine), acyl-carnitines (elevated with high TRV – Figure 4.A-D). Similar results were even more evident in Supplementary Figure 4, in which we focused on the top 30 patients with highest and lowest overall TRV, without constraining for patients’ genotypes nor for
Plasma metabolome in SCD

recent transfusion events. A snapshot of this analysis is provided in the volcano plot in Figure 4.E, which focuses on SS patients with high vs low TRV – further highlighting depletion of glutamine and 5-oxoproline (a product of the gamma-glutamyl-cycle) in patients with elevated TRV.

Plasma metabolic correlates to renal function in the WALK-PHaSST cohort

Plasma metabolic markers of renal function in SS patients who had not been transfused recently (HbA<20%) were here evaluated as a function of estimated glomerular filtration rates (eGFR), via PCA, HCA, linear models (unadjusted, or adjusted by patients’ sex and age) and correlation analyses (Figure 5.A-D). Results confirmed a significant negative correlation between eGFR and creatinine, with concomitant accumulation of acyl-carnitines, depletion of arginine and accumulation of its catabolites (creatine, citrulline), elevation in the levels of pyridoxal, n-acetylenuraminic acid, pro-inflammatory carboxylic acids (succinate), kynurenine, choline, acetyl-choline, urate, indoles. Similar results were even more evident in Supplementary Figure 5-6, in which we focused on the top 25 patients with highest and lowest overall eGFR as a function of patients’ age in SS patients only with no recent transfusion event (HbA<20% - volcano plot in Figure 5.E and heat map in Supplementary Figure 5) or the top 30 patients by high vs low eGFR overall, without constraining for patients’ genotypes nor for recent transfusion events (Supplementary Figure 6).

Plasma metabolic markers of mortality, time to event and hazard ratio in the WALK-PHaSST cohort

Finally, we performed biomarker analyses to identify plasma metabolites associated with signatures of mortality, as gleaned by volcano plot of dichotomy outcomes (dead vs alive – Figure 6.A), receiver operating characteristics (ROC) curve determination (Supplementary Figure 7) and a more formal hazard ratio of metabolomics data adjusted by patients’ age (Figure 6.B). Results confirmed a strong association between conjugated bile acids, arginine and tryptophan metabolism (creatinine, citrulline, kynurenine, anthranilate, indoles), carboxylic acids (2-hydroxyglutarate, succinate), acyl-carnitines and untoward clinical outcomes. Correlation of clinical and metabolic covariates were thus plotted in the form of a network analysis in Figure 6.C, which identified hubs of conjugated bile acids, free fatty acids (especially very-long chain poly- and highly-unsaturated fatty acids), glutamine metabolites (glutamine, glutamate, 2-oxoglutarate), pantothenate and acyl-carnitines associated with hematological (HbS, HbA, HbC, HbF %; RBC, WBC counts) and cardio-renal function parameters
Plasma metabolome in SCD (eGFR, creatinine, siten, BMI, cardiovascular risk, hemolysis). Further correlation analyses are reported for these clinical covariates to plasma metabolite levels in Supplementary Figure 8.

The Sickle Cell Disease online portal for real time processing of plasma and RBC metabolomics data in SCD against clinical covariates, and cross-matrix correlations: impact on pain crises

Clinical and plasma metabolomics data in this study, and RBC metabolomics data from our previous study(23) were collated into an online portal for real time data processing and figure generation. The portal, open and accessible at https://mirages.shinyapps.io/SCD2023/ serves as a repository for the data generated as part of this study, and as a tool to perform real time analyses and export of results upon correlation analyses between metabolites and clinical covariates, with the opportunity to modify filters (e.g. age, sex) or cross-matrix (plasma vs RBC) correlations. The portal offers the opportunity to correct for covariates of interest, for example by adjusting by HbS, HbA, HbF and HbC% (Supplementary Figure 9). Leveraging this portal we performed cross-matrix analysis of plasma and RBC metabolomics data from the Walk-PHASST study. An overview of the matrix of plasma and RBC intra- and cross-matrix metabolic correlates is provided in Figure 6.D, where metabolite pairs (x axis) are sorted by Spearman correlation coefficients (from lowest to highest). These analyses are further presented in the correlation matrix in Supplementary Figure 10. Notably, most metabolic markers of cardiorenal dysfunction (especially creatinine, citrulline and tryptophan metabolites, serotonin and kynurenine) showed significant (p<0.0001) positive correlations (r>0.5) between plasma and RBC levels. Arginine and ornithine levels, like pyruvate, poorly correlated between plasma and RBCs, suggesting cell-intrinsic mechanisms affecting the levels of these metabolites in SCD. However, these analyses also identified a discrepancy between elevation of intracellular RBC S1P levels and depletion of circulating S1P in plasma of patients with SS genotype compared to any other genotype tested in this study (Figure 6.E; Supplementary Figure 11). Similarly, increased arginine uptake from plasma to RBCs could explain the observed compartment and genotype-specific (SS vs SC) changes in arginine levels (Figure 6.E; Supplementary Figure 11).

Compartment-specific responses result in differential matrix-specific correlations to clinically-relevant outcomes, such as self-reported pain crises events in the year preceding the analysis. Correlation analysis of plasma and RBC metabolomics data to clinical measurements of pain perception showed a limited number of metabolites significantly associated with this parameter, mostly plasma metabolites that were positively associated (Supplementary Figure 12.A). Of note, AcCa 10:1 in plasma and AcCa 2:0 in RBCs were the top positive and negative correlates to pain.
Plasma metabolome in SCD

crisis events (Supplementary Figure 12.B-C, respectively). In keeping with compartment specific levels of ornithine and S1P, plasma – but not RBC – ornithine ranked amongst the top positive correlates to pain (Supplementary Figure 12.D). Plasma S1P and RBC S1P were positively and negatively associated to pain, respectively (Supplementary Figure 12.E).
DISCUSSION

Here we performed an extensive plasma metabolomics analysis of a clinically well-curated cohort of 596 SCD patients. Availability of detailed clinical measurements of HbS, A, C and F percentages allowed us to identify the impact of recent transfusion events, genotype (with an emphasis on the more severe SS vs the less clinically severe SC genotype). As a result, we identified multiple signatures associated with cardiorenal dysfunction and hazard ratios, including alterations in tryptophan/kynurenine/indole metabolism, bile acid deconjugation, acyl-carnitine and S1P metabolism, glutaminolysis and mitochondrial dysfunction and L-arginine metabolism to citrulline and creatinine (Figure 7). Results are relevant in that they confirm and expand upon previous findings in the literature, linking metabolic differences(23) to clinically relevant outcomes and providing a metabolic window on clinical efficacy of common interventions like transfusion of packed RBCs and treatment with hydroxyurea.(39) For example, previous smaller scale studies had documented a beneficial effect of transfusion events in SCD in the circulating plasma and RBC metabolome,(40) though the scale of these studies was limited to a handful of recipients with no characterization of clinical relevant covariates.

Previous studies had identified dysregulated arginine metabolism(41) via hemolysis-triggered increases in arginase activity as factor limiting nitric oxide synthesis and vasodilation in SCD patients, ultimately contributing to endothelial and cardiovascular dysfunction.(13) Here we expand on these findings identifying a role for transfusion events or hydroxyurea treatment in the amelioration of dysregulated metabolic signatures in these pathways, effects that result in the mitigation of arginine consumption and accumulation of creatinine, ornithine, citrulline and guanidinoacetate. Of note, arginine catabolism to ornithine by arginase 1 was here associated with higher incidence of pain crises events in the year preceding the analysis. Altogether, our findings are supportive of a role for the modulation of this pathway in the management of clinical manifestations in SCD, from pain crises to hemolysis-associated cardiovascular and renal dysfunction.

Similarly, previous studies had focused on glutamine consumption in the context of SCD, and glutamine supplementation as a therapeutic strategy to fuel de novo glutathione synthesis as a strategy to counteract oxidant stress in the sickle RBC, though findings are controversial as to whether glutamine supplementation aggravates or mitigates the incidence of pain and vaso-occlusive crises in this patient population.(17, 18, 42) Our findings show that accumulation of carboxylic acids – especially succinate and malate – are observed in plasma concomitantly to glutamine consumption and generation of 5-oxoproline, a byproduct of glutathione catabolism via the gamma-glutamyl-cycle
and a metabolic end-product of this cycle in the mature RBC, owing to the lack of the enzyme oxoprolinase. This observation is relevant in light of the role of these carboxylic acids, especially succinate, in the stabilization of hypoxia inducible factor 1 alpha,(43) and activation of its transcriptional targets, including interleukin 1beta.(44) Of note, accumulation of amino and carboxylic acids downstream to glutamine catabolism (glutamate, 2-oxoglutarate, 2-hydroxyglutarate, succinate – in particular) was linked to signatures of cardiorenal dysfunction and overall hazard ratio, suggesting that fueling of glutathione synthesis via oral supplementation not only promotes anaplerotic reactions, but also likely fuels catabolism towards the accumulation of pro-inflammatory small molecule mediators. Further studies with stable isotope-labeled tracers will be necessary to further test this hypothesis and the ensuing clinical ramifications.

Glycine and taurine conjugated bile acids are synthesized in the liver and deconjugated by the gut microbiome, and their accumulation in plasma is consistent with microbiome dysbiosis.(45, 46) These metabolites have been implicated in the pro-inflammatory activation of macrophages,(47) as well as in coagulopathic complications (e.g., after trauma and hemorrhage),(48) both common comorbidities in sickle cell patients. Conjugated bile acids had been previously identified as markers of cholecystectomy in sickle cell patients,(42) though the impact of patients' genotypes, transfusion events or hydroxyurea treatment on the circulating levels of these metabolites had not been reported. Of note, indole metabolites derived from tryptophan catabolism are also derived from microbial catabolism(49), and participate in systems homeostasis.(50) Like kynurenines,(51) other endogenous tryptophan metabolites, indoles participate in immunomodulatory effects on macrophages through triggering of aryl hydrocarbon receptors.(52) Of note, kynurenine was here associated with high hemolysis, increased TRV and hazard ratios. This finding is interesting in that elevated kynurenine was previously reported in individuals suffering with elevated cardiopulmonary dysfunction, pulmonary hypertension and lung fibrosis, such as subjects with Down syndrome.(53) Elevation of circulating levels of kynurenine is a hallmark of viral infection with pulmonary complications, such as COVID-19, whereby this metabolite correlates with interleukin 6 levels, clinical severity of SARS-CoV-2 infection and, ultimately, clinical outcomes.(54, 55) Of note, in both cases elevation of kynurenine is associated with the activation of the interferon-indoleamine 2,3-dioxygenase axis, in the latter case stimulated by sensing of viral nucleosides by the cGAS-STING system.(56) It is interesting to note that mitochondrial DNA and RNA (e.g., in the context of aging) have been reported to contribute to activation of the cGAS-STING responses.(57) Since mature sickle RBCs have been reported to contain up to 5-6 residual mitochondria per cell,(58, 59) in light of the elevated
degree of sickle RBC hemolysis, it is tempting to speculate that the elevated kynurenine levels as a function of high degree of hemolysis reported here participate in a similar circulating mitochondrial DNA sensing cascade, which could pave the way for potential novel therapeutic interventions. Finally, it is worth noting that elevation of kynurenine and indoles subtracts a substrate for the synthesis of serotonin, which is an essential component of platelet dense granules and a neurotransmitter that could contribute to counteracting nociceptive signaling.

Here we performed network analyses of combined metabolomics and clinical data, which showed a strong association between hematological (e.g., HbS%) and clinical parameters with all metabolites mentioned in this discussion, as well as free fatty acids and acyl-carnitines. Of note, elevated kynurenine levels had been previously associated with increased susceptibility to hemolysis in the context of obesity, whereby depletion in circulating free fatty acids (previously also reported in pediatric patients with SCD) and elevation acyl-carnitines had been identified as a marker of increased membrane RBC lipid damage and remodeling. This observation was in keeping with previous reports on the activation of the so-called Lands cycle in the context of SCD (or even just sickle cell trait), or other osmotic, mechanical or oxidative stressors to RBCs, such as blood storage, exercise, chronic or acute kidney dysfunction. Of note, our findings expand on these observations, by identifying acyl-carnitine accumulation (and correction thereof by transfusion more than hydroxyurea treatment) as a hallmark of cardiorenal dysfunction in the sickle cell patient population. Interventions with carnitine supplementation in the context of SCD may thus be beneficial – especially in combination with hydroxyurea - to fuel the Lands cycle and contribute to prevent or mitigate RBC membrane lipid damage.

Here we report a significant association between S1P depletion in plasma and genotypes with distinct severity of clinical manifestations (SS vs SC), including pain crisis events. In previous studies, we and others had reported an elevation of RBC levels of the sphingolipid S1P in association with disease severity or increased (normal and sickle) erythrocyte susceptibility to extravascular hemolysis. While the mechanism of action is unclear, it has been posited that S1P may contribute to 2,3-diphosphoglycerate-dependent modulation of oxygen off-loading. By contributing to deoxyhemoglobin stabilization, hypoxia-induced elevation of S1P may cooperate with DPG to impact the so-called oxygen-dependent metabolic modulation that involves glycolytic enzyme sequestration to the membrane via binding to band 3, which in turn regulates RBC capacity to activate the PPP to generate reducing equivalents to sustain antioxidant challenges. However, here we observe a significant depletion of circulating S1P in plasma from subjects with SS
Plasma metabolome in SCD

genotypes, especially upon correction for transfusion events or hydroxyurea treatment. These results are suggestive of a role for decreased export, rather than (or in combination with) elevated synthesis may be responsible for dysregulated S1P metabolism in SCD. These results could be perhaps explained by polymorphisms in the S1P transporter Mfsd2b(76) – previously associated with elevated susceptibility to osmotic fragility in healthy blood donor volunteers and sickle cell patients.(37)

In brief, while focusing only on central carbon and nitrogen metabolism with limited coverage of the lipidome or exposome (77), our study expands on existing literature and provides an extensive overview of the plasma metabolome in SCD and its clinical correlates, to the extent they are affected by common interventions like blood transfusion or treatment with hydroxyurea. The generation of a novel online portal as a repository for all the data described in this study will facilitate further dissemination and elaborations of the data presented herein in the future.
REFERENCES

Figure legends

Figure 1 Plasma metabolomics of the WALK-PHASST SCD cohort The plasma metabolome of patients with SS genotype – who did not receive other treatment (e.g., hydroxyurea) was evaluated as a function of recent transfusion events, as determined by HbA% (n=123 males and 120 females - A). In B, hierarchical clustering analysis of plasma metabolomics data as a function of HbS and HbA% (top 50 significant metabolites are shown). In C, smile plot of plasma metabolic correlates to HbS%. In D, partial least-square discriminant analysis of plasma metabolomics data in SS patients with recent (HbA>80%) or non-recent (HbA<5%) transfusion events. PC=Principal component. In E, volcano plot of plasma metabolites significantly higher in patients with no recent transfusion event (HbA <5%) or with recent exchange transfusion (HbA>80%). FC=fold-change.

Figure 2 Plasma metabolic differences between SCD patients with SS and SC genotypes Plasma metabolomics analyses were performed on plasma from patients with SS (n=433) or SC genotype (n =107 - A) who were not recently transfused (HbA <20% - n=306 and 101 for SS and SC, respectively). Linear models were used to identify the main differences between SS and SC patients, either unadjusted (x axis) or adjusted by HbA% (y axis - B). In C, hierarchical clustering analysis of the top 50 metabolites by t-test, and Spearman correlation analyses between plasma metabolites and HbC % (D). In E, focus on selected metabolites, including sphingosine 1- phosphate (S1P) and pentose phosphate pathway metabolites that differed significantly between plasma of SC and SS patients.

Figure 3 Plasma metabolic markers of hemolysis in SS SCD patients who were not recently transfused (HbA <20%) In A, principal component analysis of the plasma metabolomics data from this cohort, color-coded based on the degree of hemolysis. In B, C and D heat map, linear model (unadjusted or adjusted by subject sex and age on the y axis) and volcano plot of the plasma metabolites most significantly associated with hemolytic propensity. In E, volcano plot of the most significant plasma metabolic changes between the 25 patients with the highest and lowest degree of hemolysis (F).

Figure 4 Plasma metabolic markers of cardiovascular dysfunction as gleaned by TR_jet velocity in SS patients In A, principal component analysis of the plasma metabolomics data from SS patients with no recent transfusion event (HbA<20%), color-coded based on the tricuspid regurgitation velocity (TRV). In B, C and D heat map, linear model (unadjusted or adjusted by subject sex and age on the y axis) and volcano plot of the metabolites most significantly associated with TRV. In E, volcano plot and heat map of the most significant metabolic changes between the 25 patients with the highest and lowest degree of TRV.

Figure 5 Plasma metabolic markers of renal dysfunction as gleaned by eGFR and creatinine in SS patients In A, principal component analysis of the metabolomics data from this cohort, color-coded based on the eGFR. In B, C and D, heat map, linear model (unadjusted or adjusted by subject sex and age on the y axis) and volcano plot of the metabolites most significantly associated with eGFR. In E, volcano plot and heat map of the most significant metabolic changes between the 25 patients with the highest and lowest eGFR.

Figure 6 Plasma metabolic signatures of mortality, hazard ratio and plasma metabolic correlates to previously published RBC metabolomics data in the WALK-PHaSST cohort Plasma
metabolic correlates to mortality in the WALK-PHaSST cohort (A). In B, results from the hazard ratio analysis of plasma metabolomics data adjusted by patients’ age. In C, plasma metabolite levels from the present analysis of 596 samples were correlated with all available clinical and hematological covariates and plotted in the form of a network, where each node represents a covariate, and edges indicate correlation between two covariates (thickness proportional to the module and significance of this association). In D, plasma metabolite levels from the WALK-PHaSST cohort were matched to RBC metabolomics measurements (D’Alessandro et al.23). Results indicated a strong positive cross-matrix correlation for almost all metabolic markers of cardiorenal dysfunction, except for sphingosine 1-phosphate (S1P), whose levels were elevated in SS RBCs and SC plasma, suggesting an increased synthesis or decreased export in the more clinically severe SS genotype (E).

Figure 7 – Summary of the main metabolic pathways affected in plasma of SCD patients that correlate with relevant clinical outcomes. Plasma metabolomics analyses identified dysregulation of tryptophan/kynurenine/indole metabolism (A), conjugated bile acids (B), elevation of acyl-carnitines (C), mitochondrial dysfunction (D), arginine metabolism (E) as critically altered metabolic pathways associated with cardiorenal dysfunction and hazard ratios in this patient population.
RBC Hemolysis on SS metabolism (HbA < 20%)

Degree of Hemolysis

PC1 (12.9%)

PC2 (8.3%)

D

Impact of Hemolysis on plasma metabolism of SS patients not recently transfused (HbA<20%)

Hemolysis

HbA

HbS

AcCa 16:0
AcCa 16:1
Dimethylglycine
AcCa 6:0
AcCa 2:0
AcCa 14:0
AcCa 12:0
c-Linolenic acid
γ-Linolenic acid
Linoleic acid
Oleic acid
Palmitic acid
Arachidonic acid
Adrenic acid
Dihomo-γ-linolenic acid
Palmitoleic acid
Myristic acid
Myristoleic acid
Ribose P
Acetylneuraminic acid
Ribose
Indoxyl
Glycocholate
Glycochenodeoxycholate
Tauroursodeoxycholate
Tauroursodeoxycholate
Allantoin
γ-Glutamy1Se-methionine
Ornithine
Serine
Leucine/Isoleucine
Pyridoxamine P
Adenylsulfate
Arginine
Guanidinoacetate
Proline
Alanine
Glyceraldehyde 3P
Urate
Fructose BP
Kynurenic acid
UDP
Cystine
Acca 3:0
Lauric acid
Capric acid
Taurine
Malate
Succinate

B

Correlation to Hemolysis

-log10(p) vs Spearman to Hemolysis

Amino acids
Arginine
Leu/Ile
Serine

Bile acids
Glycocholate
Tauroursodeoxycholate

Spearman to Hemolysis

-0.2
-0.1
0
0.1
0.2
0.3
0.4

E

Extreme Hemolyzers (top 25 vs bottom 25)

-log10(p-value) no covariate adjustment

-0
1
2
3
4
5

-log10(p-value) adjusted for sex and age

0
1
2
3
4
5

Upon correction is:

- Significant
- Not-Significant

Higher in lowest 25 Hemolysis

Higher in highest 25 Hemolysis
SUPPLEMENTARY MATERIAL

Metabolic signatures of cardiorenal dysfunction in plasma from sickle cell patients as a function of therapeutic transfusion and hydroxyurea treatment

Angelo D’Alessandro1,2,* S. Mehdi Nouraie,3 Yingze Zhang,3 Francesca Cendali,1 Fabia Gamboni,1 Julie A. Reisz,1 Xu Zhang,4 Kyle W. Bartsch,5 Matthew D. Galbraith,5 Joaquin M. Espinosa,5 Victor R. Gordeuk,4 Mark T Gladwin6,*

1) Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
2) Department of Medicine – Division of Hematology, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
3) Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pennsylvania, USA.
4) Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.
5) Linda Crnic Institute for Down Syndrome, University of Colorado – Anschutz Medical Campus, Aurora, CO, USA
6) University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA.

*Correspondence:
Angelo D’Alessandro, PhD
Department of Biochemistry and Molecular Genetics
University of Colorado Anschutz Medical Campus
12801 East 17th Ave., Aurora, CO 80045
Phone # 303-724-0096
E-mail: angelo.dalessandro@ucdenver.edu

Mark T. Gladwin, MD PhD
Dean, University of Maryland School of Medicine;
Vice President for Medical Affairs,
John Z. and Akiko K. Bowers Distinguished Professor
University of Maryland, Baltimore, MD, USA
Phone: # 410-706-7410;
E-mail: mgladwin@som.umaryland.edu

TABLE OF CONTENTS

SUPPLEMENTARY MATERIALS AND METHODS EXTENDED.. 2
SUPPLEMENTARY REFERENCES.. 3
SUPPLEMENTARY FIGURES... 5
 SUPPLEMENTARY FIGURE 1 ... 5
 SUPPLEMENTARY FIGURE 2 ... 6
 SUPPLEMENTARY FIGURE 3 ... 7
 SUPPLEMENTARY FIGURE 4 ... 8
 SUPPLEMENTARY FIGURE 5 ... 9
 SUPPLEMENTARY FIGURE 6 ... 10
 SUPPLEMENTARY FIGURE 7 ... 11
 SUPPLEMENTARY FIGURE 8 ... 12
 SUPPLEMENTARY FIGURE 9 ... 13
 SUPPLEMENTARY FIGURE 10... 14
 SUPPLEMENTARY FIGURE 11.. 15
 SUPPLEMENTARY FIGURE 12.. 16

SUPPLEMENTARY DATA TABLE (PLEASE REFER TO “LEGEND” SHEET WITHIN THE FILE)....................XLSX
Supplementary Materials and Methods - Extended

Ultra-High-Pressure Liquid Chromatography-Mass Spectrometry (MS) metabolomics:
Frozen plasma aliquots (50 µL) were thawed on ice then extracted 1:25, in ice cold extraction solution (methanol:acetonitrile:water 5:3:2 v/v/v). Samples were vortexed for 30 min at 4°C and insoluble material pelleted via centrifugation at 15,000 g for 15 min under refrigerated conditions, as described. Analyses were performed using a Vanquish UHPLC coupled online to a Q Exactive mass spectrometer (Thermo Fisher, Bremen, Germany). Samples were resolved as described, over a Kinetex C18 column (2.1x150 mm, 1.7 µm; Phenomenex, Torrance, CA, USA) at 45°C. A volume of 10 ul of sample extracts was injected into the UHPLC-MS. Each sample was injected with two different chromatographic and MS conditions as follows: 1) using a 5 minute gradient at 450 µL/minute from 5-95% B (A: water/0.1% formic acid; B:acetonitrile/0.1% formic acid) and the MS was operated in positive mode and 2) using a 5 minute gradient at 450 µL/minute from 5-95% B (A: 5% acetonitrile, 95%water/1 mM ammonium acetate; B:95%acetonitrile/5% water, 1 mM ammonium acetate) and the MS was operated in negative ion mode. The UHPLC system was coupled online with a Q Exactive scanning in Full MS mode at 70,000 resolution in the 60-900 m/z range, 4 kV spray voltage, 15 sheath gas and 5 auxiliary gas. These chromatographic and MS conditions were applied for both relative and targeted quantitative metabolomics measurements, with the differences that for the latter targeted quantitative post hoc analyses were performed on the basis of the stable isotope-labeled internal standards used as a reference quantitative measurement, as detailed below.

Quality control and data processing: Calibration was performed prior to analysis using the Pierce™ Positive and Negative Ion Calibration Solutions (Thermo Fisher Scientific). Acquired data was then converted from raw to .mzXML file format using RawConverter. Samples were analyzed in randomized order with a technical mixture injected every 15 samples to qualify instrument performance and ensure technical coefficients of variations (standard deviation divided by the mean) below 20%. Metabolite assignments, isotopologue distributions, and quantification of stable isotope-labeled internal standards were performed using MAVEN (Princeton, NJ, USA), as described. Statistical analyses: Data analysis was performed through the auxilium of the software MAVEN. Graphs and statistical analyses (either two-way ANOVA or repeated measures
ANOVA) were prepared with GraphPad Prism 9.0 (GraphPad Software, Inc, La Jolla, CA), GENE E (Broad Institute, Cambridge, MA, USA). Multivariate analyses, including principal component analyses (PCA), hierarchical clustering analyses, two-way ANOVAs, correlation analyses (Spearman) and calculation of receiver operating characteristic (ROC) curves were performed through the software MetaboAnalyst 5.0.6 For survival analysis, we used time to right censorship (including death or last follow-up) as time to event and vital status (death or alive) was the studied outcome. PCA was used to derive a hemolytic component from lactate dehydrogenase, aspartate aminotransferase total bilirubin and reticulocyte percent.7-9 We applied Cox proportional hazard models to calculate the hazard ratios and P value for each metabolite. and Cox analysis and adjusted regressions of metabolites to clinical outcomes were performed in R (R Core Team (2022), https://www.r-project.org/).

Sickle Cell Disease ShinyApp portal A portal for online sharing of all the data generated in this study, in like-wise fashion to our recent COVID-Ome Explorer portal.10 After data curation and quality control, each of the datasets (plasma metabolomics, RBC metabolomics from our previous study on the WALK-PHASST Cohort11, clinical data) was linked at the sample level with a unique identifier, enabling cross-referencing among datasets. Then, each of the datasets was imported into applications developed using R, R Studio, and the R-based web application framework Shiny. All code required to run the COVIDome Explorer applications can be found at https://github.com/cusom/CUSOM.COVIDome.Shiny-Apps (Zenodo https://doi.org/10.5281/zenodo.5081091) and https://github.com/cusom/CUSOM.ShinyHelpers (Zenodo https://doi.org/10.5281/zenodo.5081093).

Supplementary references

Supplementary Figure 1 **Plasma metabolomics of the WALK-PHASST SCD cohort** Principal component analysis (PCA) (A) and hierarchical clustering analysis (B) of metabolomics data on 596 plasma samples from 6 different genotypes. Of note, metabolomics measurements of plasma creatinine showed significant positive correlation (r=0.95) with CLIA-measurements in the clinics, despite double randomization of the samples, blinding of the mass spec lab and prolonged storage of the Walk-PHASST samples (C), as previously noted.11
Supplementary Figure 2 Plasma metabolic correlates to Hydroxyurea treatment in the WALK-PHaSST cohort SS patients who were not recently transfused (HbA<20%; n=306) were tested as a function of treatment with hydroxyurea (n=147 vs n=159 untreated - A). In B, principal component analysis of the data from this cohort, color-coded based on HbF %. In C, heat map of the most significant metabolites affected by the treatment. In D, metabolic correlates to HbF%. In E, linear model identifying the effect of hydroxyurea in SS patients, either unadjusted (x axis) or adjusted by HbF% (y axis). In F, to reduce the noise in the hydroxyurea group, owing to questionable adherence to the treatment, we narrowed the analysis down to the patients on
treatment with MCV >105. The analysis (G) showed a beneficial effect of hydroxyrea in lowering the levels of several circulating acylcarnitines, an effect that was masked by the general analysis.

Supplementary Figure 3 Plasma metabolomics of patients enrolled in the WALK-PHASST study with high and low hemolytic propensity tracks with genotypes (high in SS, low in SC) and shows distinct metabolic phenotypes, as gleaned by principal component analysis (A), hierarchical clustering analysis (B) and line plots (C – x axis tracks with patients’ age).
Supplementary Figure 4 Plasma metabolomics of patients enrolled in the WALK-PHASST study with high and low tricuspid regurgitation velocity (TRV) tracks with genotypes (high in SS, low in SC), age (high in older patients) and shows distinct metabolic phenotypes, as gleaned by principal component analysis (A), hierarchical clustering analysis (B) and line plots (C – x axis tracks with patients’ age).
Supplementary Figure 5 Plasma metabolomics of patients enrolled in the WALK-PHASST study with high and low eGFR propensity, as gleaned by hierarchical clustering analysis (A). Metabolic markers and clinical measurements of kidney dysfunction were identified as the top correlates to patients’ age (Spearman - B).
Supplementary Figure 6 Plasma metabolomics of patients enrolled in the WALK-PHASST study with high and low eGFR tracks with genotypes (high in SC, low in SS) and shows distinct metabolic phenotypes, as gleaned by principal component analysis (A), hierarchical clustering analysis (B) and line plots (C – x axis tracks with patients’ age).
Supplementary Figure 7 *Plasma metabolic markers of mortality* as determined by receiver operating characteristic curves (ROC – A), multivariate analyses via random forest (B). The top 15 variables from this analysis are reported in C.
Supplementary Figure 8 Plasma metabolomics correlates to clinical and hematological parameters, including the degree of hemolysis (A), TRV (B), body mass index (BMI – C), estimated glomerular filtration rate (eGFR - D).
Supplementary Figure 9 Overview of the MIRAGES Sickle Cell Disease portal which offers the opportunity to perform streamlined data analysis of plasma, red blood cells or cross-matrix analyses of metabolomics data as a function of relevant clinical or hematological covariates, patients’ demographics data. The portal is freely accessible at: https://mirages.shinyapps.io/SickleCellDisease/
Supplementary Figure 10 *Plasma vs RBC metabolites: correlation matrix* Plasma metabolite levels from the WALK PHASST cohort were matched to RBC metabolomics measurements (*D’Alessandro et al. Am J Hematol 2023*). Results indicated a strong positive cross-matrix correlation for almost all metabolic markers of cardiorenal dysfunction, except for sphingosine 1-phosphate (S1P), whose levels were elevated in SS RBCs and SC plasma, suggesting an increased synthesis or decreased export in the more clinically severe SS genotype.
Supplementary Figure 11 ANOVA of merged metabolomics data from plasma and red blood cells from our recent Walk-PHASST study. Determination of the most significantly impacted metabolites in plasma (present study) and RBCs from the Walk-PHASST trial are shown in the Manhattan plot at the top of the figure, where the y axis indicates -log10 of p-values by ANOVA based on patients’ genotypes and HbS%. Of note, sphingosine 1-phosphate (S1P) in plasma and RBC ranked amongst the top 5 most significantly impacted metabolites of both matrices, though its levels were higher in SS RBCs and lower in SS plasma compared to other genotypes (box plots at the bottom of the figure).
Supplementary Figure 12 Plasma and RBC metabolic correlates to pain crisis events in SCD

Spearman correlation of plasma (yellow) and RBC (red) metabolite levels to self-reported pain crisis events in the 12 months preceding the analysis (A). Line plots show (Loess smoothing algorithm-adjusted) median (+ quartile) associations to pain for AcCa 10:1, 2:0, ornithine and S1P in plasma and RBC (B-E).