On either side of homeostasis: EPAS1 gain and loss of function mutations

by Josef T. Prchal and Gregg L. Semenza

Received: May 17, 2023.
Accepted: May 29, 2023.

Citation: Josef T. Prchal and Gregg L. Semenza. On either side of homeostasis: EPAS1 gain and loss of function mutations. Haematologica. 2023 June 8. doi: 10.3324/haematol.2023.283285 [Epub ahead of print]

Publisher's Disclaimer. E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
On either side of homeostasis: EPAS1 gain and loss of function mutations.

Josef T. Prchal and Gregg L. Semenza

1University of Utah, Salt Lake City, Utah
2Department of Genetic Medicine and Armstrong Oxygen Biology Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland

Corresponding author: Josef T. Prchal - josef.prchal@hsc.utah.edu

In this issue Dr. Rosato and colleagues from the laboratory of Dr. Roberta Russo, and other prominent collaborators, report their studies of a boy with anemia referred to them by clinical hematologists from Ancona, Italy, who noted that the child had moderate anemia but did not have appropriately elevated erythropoietin (EPO) expression (1). In fact, his EPO level was low, suggesting that it was the cause of his anemia. All the common causes of anemia were excluded. The presence of a similar phenotype in the father and his older sister suggested a genetic disorder with autosomal dominant inheritance.

The delivery of \(\text{O}_2 \) by red cells to all the other cells of the body is based on a beautiful homeostatic system in which hypoxia leads to increased EPO production, which binds to its receptor (EPOR) on erythroid progenitor cells and stimulates increased RBC formation, thereby ameliorating tissue hypoxia. The response to hypoxia is mediated by a short DNA sequence located downstream of the \(\text{EPO} \) gene that is known as the hypoxia response element, which contains a binding site for hypoxia-inducible factors (HIFs) (2). HIFs are heterodimeric transcription factors that consist of an \(\text{O}_2 \)-regulated HIF-1\(\alpha \), HIF-2\(\alpha \) or HIF-3\(\alpha \) subunit and a constitutively expressed HIF-1\(\beta \) subunit (3). HIF-1 is expressed in virtually all nucleated cells, whereas HIF-2 and HIF-3 have limited tissue expression. In the presence of \(\text{O}_2 \), HIF-\(\alpha \) subunits are modified by a family of prolyl hydroxylase domain proteins (PHD1-3) and the hydroxylated proteins are bound by the von Hippel-Lindau (VHL) protein, which recruits a ubiquitin protein ligase, leading to the ubiquitination and proteasomal degradation of the HIF-\(\alpha \) proteins. Under hypoxic conditions, the hydroxylation reaction is inhibited, and HIF-\(\alpha \) subunits rapidly accumulate and regulate the expression of thousands of genes, including \(\text{EPO} \), that mediate adaptive responses to hypoxia.

The key role of the HIF-PHD-VHL pathway in regulating erythropoiesis was underscored by the finding that familial erythrocytosis (i.e. abnormally increased RBC levels) is in some cases due to: a mutation in PHD2 that decreases hydroxylase activity; a mutation in VHL that decreases its binding to hydroxylated HIFs; or a mutation in HIF-2\(\alpha \) that protects it from hydroxylation (see Table 1 for all loci at which mutations have been identified and Semenza 2023 for references). However, the present report provides the first example of the converse: that loss of HIF-2\(\alpha \) expression results in anemia. The authors of this paper found in the propositus and his anemic
family members a novel EPAS1 mutation, c.(61del), consisting of deletion of the sixty-first nucleotide of the coding sequence. This single nucleotide deletion alters the reading frame, resulting in the generation of a premature stop codon, such that the protein translated from the mutant mRNA would only contain the first 20 amino acids of HIF-2α. This severely truncated protein is likely degraded, resulting in a null allele and haploinsufficiency for HIF-2α, which leads to deficient EPO synthesis and anemia.

HIF-2, like HIF-1, has other systemic regulatory functions. EPAS1 gain-of-function mutations have diverse pathophysiological consequences in addition to erythrocytosis, including pulmonary hypertension (4) and thrombosis (5). Whether there is impairment of any other HIF-2 regulated systemic function associated with the EPAS1c.(61del) genotype remains to be determined. One recent scientific advance may point to a potential therapy for affected individuals, which is the FDA approval, just several months ago, of daprodustat, a selective inhibitor of the HIF prolyl hydroxylases, which increases HIF activity and thereby increases EPO production (6). The drug has been approved for the treatment of anemia in patients with dialysis-dependent chronic kidney disease, which leads to a progressive loss of EPO production. It is likely that daprodustat would boost HIF-2α levels in EPAS1c.(61del) carriers, leading to increased EPO mRNA and protein expression. The close coupling of this drug approval and the report by Rosato et al. highlight the remarkably rapid progress that has been made since the discovery of HIF-1 three decades ago (2), with development of the HIF stabilizer daprodustat for the treatment of anemia (6) and the HIF-2α inhibitor belzutifan for the treatment of renal cell carcinoma (7). This is just the beginning.
References

<table>
<thead>
<tr>
<th>ECYT</th>
<th>Gene</th>
<th>Protein</th>
<th>Mutation</th>
<th>Effect</th>
<th>Genetics</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECYT1</td>
<td>EPOR</td>
<td>EPOR</td>
<td>W439X</td>
<td>GOF</td>
<td>AD</td>
</tr>
<tr>
<td>ECYT2</td>
<td>VHL</td>
<td>VHL</td>
<td>R200W</td>
<td>LOF</td>
<td>AR</td>
</tr>
<tr>
<td>ECYT3</td>
<td>EGLN1</td>
<td>PHD2</td>
<td>P317R</td>
<td>LOF</td>
<td>AD</td>
</tr>
<tr>
<td>ECYT4</td>
<td>EPAS1</td>
<td>HIF-2α</td>
<td>G537W</td>
<td>GOF</td>
<td>AD</td>
</tr>
<tr>
<td>ECYT5</td>
<td>EPO</td>
<td>EPO</td>
<td>c.32delG</td>
<td>GOF</td>
<td>AD</td>
</tr>
</tbody>
</table>

1Not shown are ECYT6-8, which are due to mutations in β-globin, α-globin, or bis-phosphoglycerate mutase, respectively, that affect hemoglobin-O₂ affinity.

2At each locus, multiple mutations have been identified in different affected individuals; only the first reported mutation is shown. All are missense mutations except ECYT1 (nonsense) and ECYT5 (single nucleotide deletion).

3Effect of the mutation is either gain-of-function (GOF) or loss-of-function (LOF).

4Autosomal dominant (AD) or autosomal recessive (AR) inheritance of the erythrocytosis phenotype.