Central nervous system therapy in acute lymphoblastic leukemia: no more, no less

by Susana Rives

Received: May 31, 2023.
Accepted: June 7, 2023.

Citation: Susana Rives. Central nervous system therapy in acute lymphoblastic leukemia: no more, no less. Haematologica. 2023 June 15. doi: 10.3324/haematol.2023.283275 [Epub ahead of print]

Publisher's Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors’ final approval; the final version of the manuscript will then appear in a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
Central nervous system therapy in acute lymphoblastic leukemia: no more, no less

Susana Rives1,2

1) Hospital Sant Joan de Déu de Barcelona, Barcelona, Spain
2) Institut de Recerca Sant Joan de Déu, Barcelona, Spain

Corresponding author: Susana Rives - susana.rives@sjd.es

Central nervous system (CNS) infiltration at diagnosis remains a poor prognostic factor in acute lymphoblastic leukemia (ALL) with more than 30% of relapses involving CNS. Treatment with antileukemic agents against CNS leukemia is an essential component for cure in ALL. With the intensification of CNS-directed therapy, cranial radiotherapy (CRT) has been completely omitted in current pediatric ALL protocols or limited to a minority of high-risk patients without an increase in relapse rates. The avoidance of CRT is an important step forward due to its long-term adverse effects, such as endocrinopathies, neurocognitive deficits and second cancers. Nevertheless, contemporary intensive systemic and intrathecal (IT) chemotherapy is also associated to short- and long-term neurotoxicity and it seems to be a threshold dose effect for the association between IT chemotherapy exposure and cognitive impairment, particularly in younger children.

The intensity of conventional chemotherapy has reached its limit in current protocols of therapy, with the rate of toxic deaths approaching deaths from relapse in pediatric patients with ALL. Concerns about acute and delayed toxicity in children treated with intensive treatment has changed the focus in new protocols of therapy aiming to avoid undertreatment, but also overtreatment.

Possible overtreatment of patients with CNS2 involvement is analyzed by Heilmann and colleagues in this issue of Haematologica. They assessed the effect of three versus five doses of IT methotrexate (MTX) in induction therapy on systemic toxicity in children and adolescents with ALL aged 1 to 17 years. In a retrospective analysis of 6,136 patients enrolled in the AIEOP-BFM 2009 clinical trial, the authors found that the addition of two extra doses of IT MTX in patients with initial CNS involvement (CNS2
and CNS3) was associated to a significant increase in life-threatening and fatal infections. Patients with CNS2 or CNS3 involvement who received 5 IT MTX showed an incidence of life-threatening and fatal infections of 4.1% and 1.6%, respectively versus 1.6% and 0.3%, respectively, in patients receiving 3 doses. The authors attributed this increase in infections to the systemic effect of IT MTX. Despite the group of patients with CNS involvement was enriched with other factors associated with an increased risk for infection, such as age older than 10 years or dexamethasone therapy in induction, having received these two additional doses of IT MTX was the strongest risk factor for severe infections in the multivariate analysis (Odds ratio 2.85, [95% confidence interval 1.96-4.14], p<0.001). CNS3 status was associated with greater risk for relapse (hazard ratios of 1.59 (95%-CI 0.85 - 3.0, p=0.15) in B-cell precursor (BCP) ALL and 2.65 (95%-CI 1.56 - 4.51, p < 0.001) in T-ALL, but CNS2 status was not. Based on the severe adverse events associated to the intensification of IT therapy in patients with CNS involvement at diagnosis, and the unclear relevance of CNS2 for relapse risk, the number of intrathecal doses is reduced in patients with CNS2 involvement in the current AIEOP-BFM ALL 2017 treatment protocol.

Frank CNS infiltration (CNS3) is an adverse prognostic factor in pediatric ALL patients. However, the impact on outcome of low levels of leukemic CNS involvement (CNS2) is controversial and varies between different treatment groups and protocols and according to ALL immunophenotype. The uncertain value of CNS2 may be due to several reasons. First, there are differences in systemic and CNS-directed treatment, which includes cranial radiotherapy in high-risk patients in some protocols that can modify and even abrogate the prognostic impact of low levels of CNS leukemia. Thus, in some clinical trials in which CNS directed therapy was not modified in CNS2 patients, CNS2 status had adverse prognostic impact. In this regard, the Children Oncology Group (COG) group published their results in three clinical trials in which patients with BCP-ALL with CNS2 involvement had higher CNS relapse rate and lower 5-year event-free survival (85% vs. 76%, p<0.001). In these treatment protocols, patients with CNS2 did not receive extra doses of IT therapy. However, in other clinical trials, in which patients with CNS2 received additional doses of IT chemotherapy during induction, CNS2 lost its prognostic significance or only retained its significance in T-ALL. Of
note, CNS2 status did not have adverse prognostic impact in patients treated with the AIEOP-BFM ALL 2009 protocol, as reported by Heilmann et al. in this Haematologica issue⁴. However, as these patients did receive 2 additional intrathecal doses, we cannot rule out that their omission might increase the risk of relapse.

Second, there might be differences in the prognostic value of CNS involvement across different biologic subgroups of ALL, with possible different impact of the therapeutic modification¹. Indeed, unlike BCP ALL, CNS2 status did not have impact on outcome in T-ALL patients treated according to augmented BFM therapy in the COG clinical trials AALL0434 and AALL1231⁸.

Finally, the incidence of CNS2 status is highly variable between groups (2.4 to 42%) being probably due to pre-analytical and analytical factors rather than to true clinical differences⁹. The way of stratifying CNS, based on leukocyte and red blood cell counts in chamber together with a cyto-centrifuge CSF sample cytologic study has low sensitivity, specificity, and reproducibility. This heterogeneity makes difficult to compare the prognostic value of CNS2 status across trials. Clearly, better methods are required to assess the degree of CNS infiltration at diagnosis, as well as biomarkers to measure response to treatment, as it occurs with MRD assessment in systemic disease. In this regard, CSF flow cytometry may achieve greater sensitivity and predictive prognostic value, as recently demonstrated by the NOPHO group¹⁰.

The study by Heilmann et al. points out important issues in the management of ALL patients such as the need of reducing toxicity and improving stratification of CNS leukemia. Better biomarkers of CNS disease allowing the administration of the right dose to prevent relapse are required to avoid overtreatment and toxicity. No more, no less.
REFERENCES


