Charting a course though the APL-like nebula: the enigmatic cousins of acute promyelocytic leukemia

by Alexandra Ghiaur and Gabriel Ghiaur

Received: May 19, 2023.
Accepted: May 29, 2023.

Publisher's Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
Acute promyelocytic leukemia (APL) is characterized by a constellation of well-established elements, including distinctive morphology, flow cytometry, and clinical presentation. Nowadays, the definitive diagnosis of APL requires the presence of a unique genetic feature, namely the t(15;17)(q24;q21), and/or the presence of the PML-RARα fusion protein(1). The management of this special subtype of acute leukemia relies on a unique approach based on differentiation induction therapy using all-trans retinoic acid (ATRA) and arsenic trioxide (ATO)(2). This dual-targeted therapy has completely revolutionized outcomes in APL. Consequently, relapse or refractory disease in patients treated with ATRA/ATO is extremely unlikely, and practically non-existent. The success of this approach has launched a search for similar types of AML that may benefit from this treatment.

Based on the distinctive morphologic features of APL, this type of leukemia was categorized as M3 in the original FAB classification in 1976(3). It was only one year later that Rowley, J., and colleagues reported that most patients with M3 APL share similar abnormalities of chromosome 17, later shown to be t(15;17)(q24;q21)(4). For the last forty-five years, the overlap between morphologically and genetically defined APL has been a topic of intense debate and scientific interest. The WHO mandated requirement for the presence of t(15;17)(q24;q21) or PML-RARα fusion for the diagnosis and definition of APL paved the way for a disease entity called variant APL(5). Variant APL, sometimes called APL-like disease, has all the morphological features of APL but lacks t(15;17)(q24;q21) or PML-RARα. In most cases, alternative translocations that involve either RARα or RARγ receptors can be identified (Figure 1). The first APL variant was described in 1993 and is defined by the presence of t(11;17)(q23;q21), resulting in a novel fusion gene, ZBTB16-RARα(6). This fusion protein is involved in MLL-induced leukemogenesis and is the most common form of PML-RARα APL. Patients harboring ZBTB16-RARα have an unfavorable prognosis and are resistant to ATRA/ATO therapy. In these cases, conventional AML chemotherapy with or without differentiation agents is the most appropriate management approach. Patients with variant APL are less likely to achieve complete remission and have a lower overall survival than those with typical APL(7).

Lately, gene expression techniques have been used to characterize morphologically defined cases of APL that lack rearrangements involving any of the RARs. Such leukemias were also termed APL-like
leukemias but distinctively selected to lack any abnormalities affecting RARs. It is currently unknown if they represent a unitary type of AML with common molecular pathology, clinical presentation, and, most importantly, response to ATRA/ATO therapy. To date, six case reports have described non-RAR molecular aberrations, with MLL rearrangement being the most cited fusion gene involved(7).

In the current issue of Haematologica, Su Z et al. investigate the gene expression profile of four cases of APL-like disease that lack the classical PML-RARα fusion protein as well as other RAR chimeric transcripts(8). Using sophisticated genetic tools, including transcriptome sequencing, they identified novel non-RAR chimeric transcripts such as KSR1-LGALS9, GPBP1L1-CCDC17, GLYCTK-DNAH1, NUP98-HOXD8, and CFD-GNA15(8). These genetic events are relatively abundant and non-overlapping, which begs the question of whether these are indeed "driver" or "passenger" mutations. Some of the described partners, such as NUP98 and HOXD8, have well-established roles in normal hematopoiesis, and it is conceptually possible that their dysregulation leads to abnormal differentiation and hematological malignancies. Nevertheless, the impact of these molecular events on the pathogenesis of APL-like disease remains to be seen.

In a previous report, five pediatric patients with non-RAR APL-like disease were managed with a combination of ATRA/ATO and standard chemotherapy, and the outcomes were favorable(9). In the current report by Su Z et al., one pediatric patient and three adults were treated with ATRA/ATO plus chemotherapy, with a considerably wide range of survival from 5 weeks to 44 months(8). Thus, the utility of ATRA/ATO in the treatment of non-RARα APL variants remains unclear.

While the current report by Su Z et al. is a step forward towards a better understanding of the molecular landscape of APL-like disease(8), further studies are warranted to establish the role of each fusion gene in variant APL development. Studies such as this one represent an opportunity for more precise stratification of APL-like AML and, at the same time, a more appropriate treatment approach.

Gene expression signatures, rather than the presence of discrete molecular events, are more likely to predict clinical behavior in acute leukemia. The best-known data comes from the use of gene expression signatures in preB ALL to identify a group of patients that have Ph-like disease even though they lack the t(9;22)(10). Similar approaches in AML may one day, not too distant, lead to the identification of an APL-like signature that predicts response to ATRA/ATO regardless of the genetic category of the disease. Until then, it is important to clearly define our goals and terminology as we chart our course through future studies of this disease entity.
References:

Figure: Schematic representation of the genetic features and therapeutic implications of APL and APL-like disease
Genetically defined APL
- Most patients have t(15;17) and PML-RARα identified
- 5% of patients have a cryptic translocation detected by RT-PCR for PML-RARα
- The standard of care is ATRA/ATO therapy with excellent outcome

NPM1-mutated AML
- 30% of patients diagnosed with NPM1 positive AML may have APL-like phenotype and clinical presentation
- NPM1 AML cells may respond to ATRA/ATO [7]

APL-like with translocations involving RAR

<table>
<thead>
<tr>
<th></th>
<th>ATRA sensitive</th>
<th>ATRA resistant</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATO sensitive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RKAR1A-RARA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GTF2I-RARA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF2BP2-RARA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FNDC3B-RARA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATO resistant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCOR-RARA</td>
<td></td>
<td>ZBTB16-RARA</td>
</tr>
<tr>
<td>STAT5B-RARA</td>
<td></td>
<td>NUP98-RARG</td>
</tr>
<tr>
<td>NUP98-HOXD8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATO NT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPM1-RARA</td>
<td></td>
<td>TBLR1-RARB</td>
</tr>
<tr>
<td>NuMA-RARA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIP1L1-RARA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

APL-like without translocations involving RAR

- M3 that lacks genetic marker of APL (variant APL, APL-like)
 - Most patients have translocations affecting RARα or other RARs [2][7]
 - Patients with non-RAR rearrangements have some response to combination of ATRA and chemotherapy

NPM1-AML
- MLL-AF1Q
- TBC1D15-RAB21
- KSR1-LGALS9
- NUP98-HOXD8
- CFD-GNA15