Specific blood monocyte distribution in histiocytoses correlates with vascular involvement and disease activity

by Jerome Razanamahery, Maxime Samson, Julien Guy, Jessica Racine, Celine Row, Hélène Greigert, Barbara Nicolas, Stephanie Francois, Jean-François Emile, Fleur Cohen-Aubart, Sylvain Audia, Julien Haroche, and Bernard Bonnotte

Received: January 18, 2023.
Accepted: June 1, 2023.

Citation: Jerome Razanamahery, Maxime Samson, Julien Guy, Jessica Racine, Celine Row, Hélène Greigert, Barbara Nicolas, Stephanie Francois, Jean-François Emile, Fleur Cohen-Aubart, Sylvain Audia, Julien Haroche, and Bernard Bonnotte. Specific blood monocyte distribution in histiocytoses correlates with vascular involvement and disease activity. Haematologica. 2023 June 15. doi: 10.3324/haematol.2023.282739 [Epub ahead of print]

Publisher's Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors’ final approval; the final version of the manuscript will then appear in a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
Specific blood monocyte distribution in histiocytoses correlates with vascular involvement and disease activity.

Jerome Razanamahery¹, Maxime Samson¹, Julien Guy², Jessica Racine², Celine Row², Hélène Greigert¹, Barbara Nicolas¹, Stephanie Francois³, Jean-François Emile⁴, Fleur Cohen-Aubart⁵, Sylvain Audia¹, Julien Haroche⁵ and Bernard Bonnotte¹

¹Department of Internal Medicine and Clinical Immunology, Francois Mitterrand Hospital, Dijon University Hospital, Dijon, Bourgogne-Franche Comté, France
²Hematology Laboratory. Dijon University Hospital, Dijon, Bourgogne-Franche Comté, France
³Immunology Laboratory. Dijon University Hospital, Dijon, Bourgogne-Franche Comté, France
⁴Department of Pathology. Ambroise-Paré Hospital. Assistance-Publique Hopitaux de Paris. Paris, France
⁵Sorbonne Université, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Internal Medicine Department 2, National reference center for histiocytosis, Paris, France

Running head: Specific monocyte distribution in histiocytoses

Corresponding author:
Razanamahery Jerome, M.D
Department of Internal Medicine and Clinical Immunology
Dijon University Hospital, Dijon, France
Phone number: +33 3 80 29 30 31
Email address: razanamahery.jerome@hotmail.fr

Data sharing statement: Complete data including flow cytometry analysis can be requested from the corresponding author at: razanamahery.jerome@hotmail.fr
Supplementary figures: 1

Disclosure of Conflicts of Interest: F.C.-A. and J.H. are investigators (F.C.-A. being the PI) of an academic study on the efficacy of cobimetinib for treating histiocytoses. The authors declare no other competing financial interests for this study.

Keywords: histiocytoses, monocyte, vascular damage, disease activity, clonal hematopoiesis

Abbreviations:
ECD: Erdheim-Chester Disease
LCH: Langerhans cell histiocytosis
RDD: Rosai-Dorfman Disease
CMML: Chronic myelomonocytic leukemia
ET: Essential thrombocythemia
HD: Healthy donor
CH: Clonal hematopoiesis
MAP-kinase: Mitogen Activated Protein-kinase
Histiocytoses are rare hematological disorders characterized by the proliferation and accumulation of CD68+ histiocytes in tissues\(^1\). Previously considered as inflammatory conditions, several adult’s histiocytoses (Erdheim-Chester disease (ECD), Langerhans cell histiocytosis (LCH), Rosai-Dorfman disease (RDD)) are now classified as myeloid neoplasms\(^2\). Indeed, these patients display recurrent molecular features like somatic mutations in the mitogen activating-kinase (MAP-kinase) pathway genes\(^1\), myeloid neoplasms (chronic myelomonocytic leukemia (CMML) and essential thrombocytopenia (ET))\(^3\) or clonal hematopoiesis (CH)\(^4\), which gave rise to this paradigm shift. Despite these significant advances, the cellular origin of histiocytes is still unknown. Nevertheless, monocytes are essential to the ontogeny of histiocytic disorders\(^5\). Circulating monocytes are divided into three subsets (“classical”, “intermediate” and “non-classical”) with a distribution influenced by the innate immune system and environmental signals\(^6\). During histiocytoses, circulating monocytes arising from bone marrow progenitors carry most MAP-kinase gene mutations, but only “classical” monocytes can differentiate into tissue histiocytes\(^5\). Increase in “classical” monocytes was reported in CMML\(^7\) and inflammatory states\(^8\), while a decrease in the “non-classical” subset was described in vascular disorders\(^9\).

However, little is known about the distribution of the circulating monocyte subsets in histiocytoses\(^10\) and their differences from other myeloid neoplasms. We therefore sought to evaluate the distribution of the circulating monocyte subsets in patients with histiocytoses compared to patients with myeloid neoplasms (CMML and ET) and healthy donors (HD).

Peripheral blood cells were obtained from patients diagnosed at Dijon University hospital between 2020 and 2021, with histiocytoses (n=17), CMML (n=7) mainly CMML-0 (n=6), ET (n=7), and HD (n=21), after informed consent. All blood samples were obtained at a steady state, after ruling out infection and worsening of the hemopathy. Among histiocytoses, 8 patients had ECD (62.5% \(BRAF^{V600E}\) mutated), 5 LCH (40% \(BRAF^{V600E}\) mutated), and 4 RDD (50% \(MAP2K1\) mutated). Samples were obtained at the time of diagnosis for two patients (#4,#15) and four (#12,#15,#16,#17) were treatment-naïve. Three patients had concomitant myeloid neoplasms (2 CMML and 1 ET in ECD patients), and 6 had concomitant CH (4 ECD, 1 LCH, 1 RDD). Patient characteristics are reported in supplementary Table 1. Blood cells were stained for CD7, CD11b, CD13, CD14, CD15, CD16, CD33 and CD45. Data were acquired on a Navios cytometer and analyzed with Kaluza software (Beckman-Coulter\(^\text{®}\)). Monocytes were separated on a CD14/CD16 scatter into CD14+/CD16− (classical), CD14+/CD16+ (intermediate), and CD14+/CD16++ (non-classical) as previously reported\(^11\).
The gating procedure is described in Figure 1. Diagnosis of histiocytoses was performed according to current guidelines, expert analysis and biopsies samples were centrally reviewed by an expert pathologist (J.F.E) for molecular analysis. Organ involvement and disease activity were assessed by imaging including \(^{18}\)fluorodeoxyglucose positron emission tomography\(^1\). Diagnosis of myeloid neoplasms and clonal hematopoiesis (CH) was assessed according to biological tests completed by bone marrow analysis\(^2\). CH was defined by at least one myeloid gene mutation in bone marrow with a variant allele frequency over the threshold of 2\% and no morphological evidence for hematological malignancies.

The myeloid gene panel analyzed by NGS included: \(\text{ASXL1, ASXL2, ATM, BCOR, CALR, CBL, CEBPA, DDX41, DNMT3A, EZH2, FLT3, GATA2, HRAS, IDH1, IDH2, IKZF1, JAK2, KIT, KRAS, MPL, NPM1, NRAS, PHF6, PTPN11, RAD21, RUNX1, SETBP1, SF3B1, SH2B3, SMC1A, SMC3, SRSF2, STAG2, TET2, TP53, U2AF1, WT1, ZRSR2, BRAF, ETV6, BCORL1, CCND3, EP300, EPOR, ETV6, ENK1, NFE2, PPM1D, STAG1, TERF, TERT, TET3, THPO, U2AF2, UBA1, EIF6, SRP72, SRP68, ANKRD26, RBBP6, GATA1, RPL23, PRPF8, CSNK1A1.}\)

Quantitative data are expressed by median with interquartile range [IQR] and were compared between groups using Mann-Whitney tests. Qualitative data are expressed by number (percentage) and were compared using Chi2 or Fisher tests, as appropriate. For multiple group comparisons (>2), we used an analysis of variance (ANOVA) test with the Kruskal-Wallis procedure followed by Dunn’s multiple comparison with histiocytoses as the reference group. Multiple linear regression analysis was performed with all variables with a p-value <0.2 in simple linear regression analysis for all monocyte subsets. Statistical significance was set at p < 0.05 (two-sided). Analyses were performed with GraphPad Prism software V.9 (GraphPad, San Diego, California, USA).

The study was approved by the ethics committee of Dijon University hospital and is in accordance with the principles of the declaration of Helsinki.

During histiocytoses, an increase in “classical” monocytes was observed, compared to ET (p=0.01) while “intermediate” (vs. ET; p=0.02) and “non-classical” monocytes (vs. HD; p=0.04) were decreased (Figure 2A and supplementary Table 2). Monocyte repartition did not differ between the different types of histiocytoses. Nevertheless, ECD patients had increased “classical” monocytes compared to ET patients (93\% [83-96] vs. 76\% [71-84]; p=0.032) and decreased “non-classical” monocytes compared to HD (1.5\% [1-4] vs. 6.1\% [4-10]; p=0.029), echoing the study published by Papo \textit{and al}\(^10\). The distribution of monocyte subsets in histiocytoses was close to that in CMML (Figure 2A), suggesting some common pathogenesis pathways between those two disorders. Two arguments may partly explain this
close distribution. First, CMML is the most frequent myelodysplastic/myeloproliferative neoplasms associated with histiocytoses\(^3\). Secondly, the involvement of the MAP-kinase pathway activation has been reported in both pathologies (mostly by \(BRAF\) or \(MAP2K1\) gene mutations in histiocytoses and \(KRAS, NRAS\) followed by \(BRAF\) in CMML)\(^1,12\).

Furthermore, we have evaluated the impact of bone marrow mutation, i.e. clonal hematopoiesis, in monocyte distribution in patients with histiocytoses with or without CH compared to CMML patients. The presence of CH in histiocytoses patients induced significative changes in monocyte distribution compared to CMML patients with a decrease in “classical” monocytes (92%[76-93] vs. 97%[96-98]; \(p=0.002\)), and an increase in intermediate and “non-classical” monocytes: 5%[4.0-6.5] vs. 2.3%[1.0-2.5] (\(p=0.03\)) and 4%[2.5-7.5] vs. 0.6%[0.4-1.5] (\(p=0.01\)) while no significant difference was observed in CH-histiocytoses patients compared to CMML patients. These results suggest an impact of clonal hematopoiesis in the distribution of monocytes during histiocytoses (\textbf{Figure 2B}).

We investigated whether the distribution of the monocyte subsets was associated with specific organ damage. Seven (6 ECD including 5 \(BRAF^{V600E}\), 1 RDD) patients had vascular involvement. They presented an increase in classical monocytes (96.00% [92.0-96.0] vs. 86.00%[82.5%-92.0%]; \(p=0.008\)) and a decrease in “non-classical” monocytes (1.00% [1.0-2.0] vs. 5.00%[3.50-9.50]; \(p=0.007\)) (\textbf{Figure 3A}). The correlation between “non-classical” monocytes <4% and vascular involvement was confirmed by Pearson model (0.648; 95%CI [0.25-0.86]; \(p=0.005\)) (\textbf{supplementary Figure 1}). Our results are in line with the fact that “non-classical” monocytes are associated with vascular disorders\(^9\), their decrease being correlated with the progression of coronary disease in atherosclerotic patients\(^13\). Thus, our results in histiocytoses suggest that “non-classical” monocytes may be a specific marker of vascular damage, irrespective of the mechanism.

We then investigated whether the distribution of monocyte subsets correlated with disease activity. Histiocytoses patients achieving a metabolic response had a lower percentage of “intermediate” monocytes (3.5%[2.0-5.0] vs. 7.0%[4.0-13.0]; \(p=0.04\)) and lower CRP levels (3.0 [1.1-8.7] vs. 33.65 [5.3-59.5] mg/L; \(p=0.04\)) (\textbf{Figure 3B}), which is on the line with the fact that “intermediate” monocytes produce higher levels of IL-12, TNF-\(\alpha\), IL-1\(\beta\), and IL-6 than “classical” monocytes\(^14\). Thus, patients achieving a metabolic response have the lowest “inflammatory” state, as supported by low CRP levels and low “intermediate” monocyte frequency.

We then assessed whether intrinsic or extrinsic factors could influence the distribution of monocyte subsets in patients with histiocytoses. Multiple linear regression showed a
relationship between clonal hematopoiesis and the percentage of “classical” monocytes (β coefficient: -10.78; 95%CI [-16.83 to -4.737]; p=0.002). Monocyte regulation depends on the innate immune system and environment⁶. Recently, the concept of trained immunity in myeloid cell homeostasis has emerged. This elaborated program is driven by epigenetic machinery providing memory immunity in the monocyte/macrophage system¹⁵. As the trained immunity influences hematopoiesis and inflammation leads to clonal hematopoiesis, our data question the role of trained immunity in all histiocytoses, not only in BRAF-mutated ECD¹⁶.

Our study has some limitations. First we focused on circulating cells, whereas monocytes bearing the mutations represent a marginal proportion of mutated bone marrow-derived cells. However, in order to determine biomarkers useful to the management of patients, circulating cells remain the most convenient. Secondly, the analyses were performed at different times in the disease course, and drugs may have interfered with the distribution of monocyte subsets. Nevertheless, it is currently the best way to assess the modification of monocyte subset distribution related to disease activity. In addition, complementary molecular analysis in all the tissues available revealed a higher frequency of myeloid gene mutations in the bone marrow rather than in the MAP-kinase pathway which may be explained by the combined effect of drugs¹⁷ and aging¹⁸. Finally, we did not perform Grubb’s test & outlier exclusion because of the difficulty of obtaining samples in these rare diseases.

However, our work highlights for the first time the difference in monocyte distribution in histiocytoses compared to myeloid malignancies and HD. It also showed a correlation between “non-classical” monocytes and vascular involvement, which can be helpful for both initial staging and follow-up. As the decrease in “intermediate” monocytes was associated with lower CRP levels and metabolic response, its accuracy in response assessment will be prospectively explore to determine which of "intermediate" monocytes or CRP variation is more effective in predicting relapse.

In summary, circulating monocytes may be the precursors of pathogenic histiocytes in tissues. Their subset distribution is singular in histiocytoses compared to other myeloid neoplasms and is influenced by clonal hematopoiesis. The decrease in the “non-classical” subset could represent a surrogate marker of vascular involvement, while the decrease of the intermediate fraction is associated with a metabolic response.
References:
Figure 1: Procedure for gating monocytes by flow cytometry.
Monocytes were identified from PBMC with CD45 and CD33 expression after successive exclusion of T lymphocytes, NK cells, residual lymphocytes and basophils. Then monocytes were analysed regarding CD14/CD16 expression for classical, intermediate and non-classical monocytes.

Figure 2: Distribution of monocyte subsets in histiocytoses and myeloid neoplasms and according to molecular status.

A) **Distribution of monocyte subsets** in patients with histiocytoses (n=17), chronic myelomonocytic leukemia (n=7), essential thrombocytemia (n=7) and healthy donors (n=21). B) **Distribution of monocyte subsets** in histiocytoses with clonal hematopoiesis (CH+) (n=6), without clonal hematopoiesis (CH-) (n=9) and CMML patients (n=7).

Percentages are given among total monocytes. Horizontal bars show the median and error bars the IQR. P-value is the result of the ANOVA test. * for p<0.05; ** for p<0.01; ns: non-significant.

Figure 3: Distribution of monocyte subsets in histiocytoses according to vascular injury and disease activity
Comparison of the distribution of monocyte subsets according to A) the presence of vascular injury (n=7) or not (n=10), and B) to the achievement of a metabolic response (n=10) or not (n=7). Disease activity was established using the last metabolic evaluation with 18Fluorodeoxyglucose positron emission tomography-computed tomography (18FDG-PET-CT) according to PERCIST criteria. Complete metabolic response was defined by normalization of all lesions to at or below Standardized Uptake Value (SUV) of liver background. Partial metabolic response was defined by a $\geq 50\%$ decrease in the sum of all target lesion baseline SUV. Progressive metabolic disease was defined by a $\geq 50\%$ increase in the nadir sum of all target or new evaluable lesion SUV. Stable metabolic disease was defined as condition that did not meet previous criteria. Patients with "complete metabolic response" and "partial metabolic response" were considered as responders and patients with "stable metabolic disease" and "progressive metabolic disease" considered as non-responders.
Case	Age of diagnosis	Gender	Type of histiocytic disorder	Bone involvement	Tissue involvement	VAF on tissue	Mutated gene(s)	Cell of origin	Therapy at dose	Therapy at dose	Clinical response	Non-clinical response	Duration of benefit					
#1	71	71	ECD	monosomy, bone, CNS, peri-renal	heart, bone marrow	monosomy, peripheric	BRAF v.1597A, p.(Glu508Lys); NRAS v.452C>T, p.(Glu151Asp); HRAS v.32G>A, p.(Glu109Asp); JAK2 v.620A>G, p.(Asp175Val)	14%	0.1	TE227, 5225A>T; p.(Leu1529F)	45%	2%	None	BRAF inhibitor	IL-3 blockers	98%	5%	1% Partial metabolic response
#2	68	62	ECD	monosomy, bone, CNS, peri-renal, heart, bone marrow	monosomy, peripheric	monosomy, peripheric	BRAF v.1597A, p.(Glu508Lys); NRAS v.452C>T, p.(Glu151Asp); HRAS v.32G>A, p.(Glu109Asp); JAK2 v.620A>G, p.(Asp175Val)	15%	0.1	TE227, 5225A>T; p.(Leu1529F)	45%	2%	None	BRAF inhibitor	IL-3 blockers	98%	5%	1% Partial metabolic response
#3	71	73	ECD	heart, bones, vessels, monosomy, peri-renal	heart, bone marrow	monosomy, peripheric	BRAF v.1597A, p.(Glu508Lys)	10%	0.1	TE227, 5225A>T; p.(Leu1529F)	45%	2%	None	BRAF inhibitor	MEK inhibitor	98%	5%	1% Partial metabolic response
#4	24	25	ECD	vessels, bone, skin	vessels	No mutation	0	0	TE227, 5225A>T; p.(Leu1529F)	45%	2%	None	BRAF inhibitor	MEK inhibitor	98%	5%	1% Partial metabolic response	
#5	72	77	ECD	bone, lung, skin, vessels	death	death	BRAF v.1597A, p.(Glu508Lys)	30%	0.1	TE227, 5225A>T; p.(Leu1529F)	45%	2%	None	BRAF inhibitor	MEK inhibitor	98%	5%	1% Partial metabolic response
#6	54	66	ECD	bone, peri-renal, monosomy	no mutation	no mutation	BRAF v.1597A, p.(Glu508Lys); NRAS v.452C>T, p.(Glu151Asp); HRAS v.32G>A, p.(Glu109Asp)	15%	0.1	TE227, 5225A>T; p.(Leu1529F)	45%	2%	None	BRAF inhibitor	MEK inhibitor	98%	5%	1% Partial metabolic response
#7	61	61	ECD	bone, heart, bone, CNS, peri-renal	no mutation	no mutation	BRAF v.1597A, p.(Glu508Lys)	15%	0.1	TE227, 5225A>T; p.(Leu1529F)	45%	2%	None	BRAF inhibitor	MEK inhibitor	98%	5%	1% Partial metabolic response
#8	58	63	ECD	bone, monosomy, monosomy	bone, monosomy	BRAF v.1597A, p.(Glu508Lys)	15%	0.1	TE227, 5225A>T; p.(Leu1529F)	45%	2%	None	BRAF inhibitor	MEK inhibitor	98%	5%	1% Partial metabolic response	
#9	59	71	RDD	peripheral	peripheral	BRAF v.1597A, p.(Glu508Lys)	15%	0.1	TE227, 5225A>T; p.(Leu1529F)	45%	2%	None	BRAF inhibitor	MEK inhibitor	98%	5%	1% Partial metabolic response	
#10	39	41	RDD	skin, bone, eye, vessel	vessels	BRAF v.1597A, p.(Glu508Lys)	15%	0.1	TE227, 5225A>T; p.(Leu1529F)	45%	2%	None	BRAF inhibitor	IL-3 blockers	98%	5%	1% Partial metabolic response	
#11	67	67	RDD	bone	bone	bone	BRAF v.1597A, p.(Glu508Lys)	15%	0.1	TE227, 5225A>T; p.(Leu1529F)	45%	2%	None	BRAF inhibitor	IL-3 blockers	98%	5%	1% Partial metabolic response
#12	62	65	RDD	skin, lymph node	skin, lymph node	skin	BRAF v.1597A, p.(Glu508Lys)	15%	0.1	TE227, 5225A>T; p.(Leu1529F)	45%	2%	None	BRAF inhibitor	IL-3 blockers	98%	5%	1% Partial metabolic response
#13	64	64	LCH	liver, endocrine	liver	liver	BRAF v.1597A, p.(Glu508Lys)	15%	0.1	TE227, 5225A>T; p.(Leu1529F)	45%	2%	None	BRAF inhibitor	IL-3 blockers	98%	5%	1% Partial metabolic response

Supplementary Table 1 Characteristic of patients with histiocytic disorders.
Supplementary Table 2: Main characteristics of patients with histiocytoses, chronic myelomonocytic leukemias, essential thrombocythemia and healthy donors.

<table>
<thead>
<tr>
<th></th>
<th>Histiocytes (n=17)</th>
<th>Chronic myelomonocytic leukemias (n=7)</th>
<th>Essential thrombocythemia (n=7)</th>
<th>Healthy donors (n=21)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at blood sampling (years), median [IQR]</td>
<td>66 [53-71]**</td>
<td>80 [76-84]</td>
<td>82 [77-87]</td>
<td>73 [57-82]</td>
<td>0.0027</td>
</tr>
<tr>
<td>Sex M/F</td>
<td>10/7</td>
<td>4/3</td>
<td>2/5</td>
<td>9/12</td>
<td>0.5186</td>
</tr>
<tr>
<td>White cell count (*/mm³)</td>
<td>8100 [5800-9020]</td>
<td>6800 [5000-9900]</td>
<td>9500 [7700-14400]</td>
<td>5600 [4700-6800]</td>
<td>0.0092</td>
</tr>
<tr>
<td>Neutrophils (*/mm³)</td>
<td>4720 [3700-6305]</td>
<td>2990 [2100-4030]</td>
<td>7040 [5240-9900]</td>
<td>3240 [2735-4180]</td>
<td>0.0017</td>
</tr>
<tr>
<td>Lymphocytes (*/mm³)</td>
<td>1610 [1150-2230]</td>
<td>1800 [850-2270]</td>
<td>1780 [1060-2860]</td>
<td>1620 [1090-2175]</td>
<td>0.9825</td>
</tr>
<tr>
<td>Total monocytes (*/mm³)</td>
<td>620 [505-815]*</td>
<td>1840 [1190-2653]</td>
<td>940 [550-1040]</td>
<td>490 [365-620]</td>
<td><0.0001</td>
</tr>
<tr>
<td>Classical monocytes %</td>
<td>92% [84-96]*</td>
<td>97% [96-98]</td>
<td>76% [71-84]</td>
<td>85.9% [77.6-89.8]</td>
<td><0.0001</td>
</tr>
<tr>
<td>Intermediate monocytes %</td>
<td>4% [3-7.5]*</td>
<td>2.5% [1.3-2.8]</td>
<td>13% [9-18]</td>
<td>6.6% [4.4-13.3]</td>
<td>0.0002</td>
</tr>
<tr>
<td>Non-classical monocytes</td>
<td>4% [1-7]°</td>
<td>0.5% [0.5-1.5]</td>
<td>9% [3-13]</td>
<td>6.1% [4.4-10]</td>
<td><0.0001</td>
</tr>
<tr>
<td>Platelet count (G/L)</td>
<td>224 [175-362] *</td>
<td>88 [37-150]</td>
<td>478 [423-1206]</td>
<td>NA</td>
<td>0.0003</td>
</tr>
<tr>
<td>CRP (mg/L)</td>
<td>4.0 [2.150-13.10] *</td>
<td>NA</td>
<td>49.1 [12.7-130]</td>
<td>2.9 [2.9-2.9]</td>
<td><0.0001</td>
</tr>
<tr>
<td>Triglycerides (g/L)</td>
<td>1.505 [0.76-2.14] *</td>
<td>NA</td>
<td>0.51 [0.365-0.995]</td>
<td>NA</td>
<td>0.0147</td>
</tr>
</tbody>
</table>

P-value is the result of Kruskal Wallis tests. *p<0.05 vs. essential thrombocytopenia, ‘p<0.05 vs. chronic myelomonocytic leukemia, °p<0.05 vs. healthy donors. All quantitative data are expressed by median with interquartile range [IQR]
Supplementary Figure 1: Heat map for variables correlated with vascular involvement in histiocytes using Pearson regression model

For the Pearson regression model, we have divided the group using the median of each variable. The variables correlated with vascular involvement were:

- “non-classical” monocytes below 4%: Pearson r: 0.648, 95%CI [0.2430-0.8606]. P=0.005
- ECD: Pearson r: 0.648, 95%CI [0.045 to 0.79]; P=0.005
- *BRAF* V600E mutation: Pearson r: 0.514, 95%CI [0.044 to 0.79]; P=0.035

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pearson r</th>
<th>95% CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>“non-classical” monocytes below 4%</td>
<td>0.648</td>
<td>[0.2430-0.8606]</td>
<td>0.005</td>
</tr>
<tr>
<td>ECD</td>
<td>0.648</td>
<td>[0.045 to 0.79]</td>
<td>0.005</td>
</tr>
<tr>
<td>BRAF V600E mutation</td>
<td>0.514</td>
<td>[0.044 to 0.79]</td>
<td>0.035</td>
</tr>
</tbody>
</table>