Treg-targeted IL-2/anti-IL-2 complex controls graft-*versus*host disease and supports anti-tumor effect in allogeneic hematopoietic stem cell transplantation

Allan Thiolat,^{1*} Caroline Pilon,^{1,2*} Pamela Caudana,^{3,4} Audrey Moatti,¹ Nhu Hanh To,¹ Christine Sedlik,^{3,4} Mathieu Leclerc^{1,5} Sébastien Maury^{1,2,5} Eliane Piaggio^{3,4#} and José L Cohen^{1,2#}

¹University Paris Est Créteil, INSERM U955, IMRB, Créteil; ²AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Centre d'Investigation Clinique Biothérapie, Fédération Hospitalo-Universitaire TRUE, Créteil; ³INSERM U932, PSL Research University, Institute Curie Research Center, Paris; ⁴Department of Translational Research, PSL Research University, Institute Curie Research Center, Paris and ⁵AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Service d'Hématologie Clinique, Créteil, France

*AT and CP contributed equally as first authors. #EP and JLC contributed equally as senior authors. **Correspondence:** J.L. Cohen jose.cohen@inserm.fr

Received: Accepted: Early view: January 6, 2023. September 7, 2023. September 14, 2023.

https://doi.org/10.3324/haematol.2022.282653

©2024 Ferrata Storti Foundation Published under a CC BY-NC license 😇 🛈 S

Supplemental table 1. List of antibodies used

Antigens	Clones	Fluorochromes	Manufacturers
H2Kk	AF3-12.1.3	eF450	Invitrogen
H-2Kd	SF-1.1	PE	Invitrogen
CD3	145-2C11	PE-Cy5	Invitrogen
CD3	145-2C11	BV510	Invitrogen
CD8	REA601	FITC	Miltenyi
NKP46	29A1.4.9	PE	Miltenyi
CD62L	MEL-14	PE	Invitrogen
CD120b	REA228	APC	Miltenyi
CD44	REA664	APC-Cy7	Invitrogen
CD4	RM4-5	PE-Cy	Invitrogen
CD4	RM4-5	APC-Cy7	Invitrogen
PD-1	HA2-7B1	V450	Miltenyi
CD25	PC61,5	PE-Cy7	Invitrogen
CD44	IM7	PE-Cy7	Invitrogen
CD4 (hu)	RPA-T4	APC	BD Biosciences
CD4 (hu)	RPA-T4	PerCP-Cy5.5	BD Biosciences
CD4 (hu)	RPA-T4	APC-Cy7	BD Biosciences
CD8 (hu)	RPA-T8	PE	BD Biosciences
CD56 (hu)	B159	APC	BD Biosciences
CD45 (hu)	HI30	APC	BD Biosciences
CD25	2A3	PE-Cy7	BD Biosciences
INTRACELLULAR			
Antigens	Clones	Fluorochromes	Manufacturers
Foxp3	FJK-16S	eF450	Invitrogen
Foxp3	FJK-16S	PE-Cy5	Invitrogen
TBET	30F11	APC	Miltenyi
CTLA-4	UC10-4B9	PE	Invitrogen
EOMES	REA116	PE	Miltenyi
TNFa	REA636	FITC	Miltenyi
INFg	REA638	PE	Miltenyi
IL-17	TC-11,18H10	APC	Miltenyi
Foxp3 (hu)	PCH101	eF450	Invitrogen

B56

VIABILITY

Ki67

Fluorochromes	Manufacturers
AF R700	BD Biosciences
V500	Invitrogen

FITC

BD Biosciences

Fixable viability stain Fixable viability dye

Only Cx25 prolongs allogeneic skin transplantation.

(A) B6 recipient mice were grafted with skin from B6D2F1 donor mice. Grafted mice were divided into four groups: untreated (n=6), IL-2 alone (n=5), Cx25 alone (n=8) and Cx122 alone (n=6), (B) Graft survival curves of cumulative data of two independent experiments are shown. Kaplan Meier survival curves were compared using the log-rank test. *P < 0.05, **P < 0.01, ***P < 0.001.

(A) Lethally irradiated B6C3F1 received semi-allogeneic HSCT (10 x 10⁶ BM cells plus 2 x 10^{6} T cells). Mice were untreated (n=5) or treated from d0 to d4 after HSCT with Cx25 (n=5), Cx122 (n=5), anti-CTLA4 (n=5), Cx25 + anti-CTLA4 (n=5) or Cx122 + anti-CTLA4 (n=5). (B) Clinical grade curves were compared using two-way Anova test. (C) Kaplan Meier survival curves were compared using the log-rank test. *P < 0.05, **P < 0.01

IL-2/anti-IL-2 complexes modify the CD8+Foxp3-/CD4+Foxp3+ ratios in the liver of grafted animals.

Lethally irradiated B6C3F1 received 10 x 106 semi-allogeneic B6 BM cells and 2 x 106 B6 T cells and were treated as for Figure 2. On d12, mice were sacrificed and livers were collected for analysis. (**A**) Numbers of liver cells and CD4+ and CD8+ T cells are depicted as in figure 3A. (**B**) Percentages of CD4+Foxp3-, CD4+Foxp3+, CD8+Foxp3- and CD8+Foxp3+ cells among live liver cells and CD8+Foxp3-/ CD4+Foxp3+ ratios are shown for each group of mice as in Figure 3A. Data cumulative from three independent experiments are presented as the mean ± SEM. Kruskal-Wallis tests were performed. *P < 0.05, **P < 0.01, ***P<0.001.

Effects of Cx25 or Cx122 treatment on regulatory T cell phenotype.

B6C3F1 mice were lethally irradiated and grafted and were either untreated (n=5) or treated from d0 to d4 after HSCT with Cx25 (n=8) or with Cx122 (n=8). On d12, mice were sacrificed and the percentages and MFI values of CTLA-4+, TNFR2+ and CD25+ among regulatory T cells defined as CD4+ Foxp3+ cells were analyzed by flow cytometry. Histogram staining, percentage and MFI value of CTLA-4+, TNFR2+ and CD25+ among CD4+Foxp3+ cells are shown for each group. Data are the cumulative data of two independent experiments. Data are presented as the mean \pm SEM. Kruskal-Wallis tests were performed to compare each group. *P < 0.05.

Α

IL-2/anti-IL-2 complexes modify the distribution of naïve/memory populations and the activation state of T cells after HSCT.

B6C3F1 mice were lethally irradiated and grafted as for figures 2 and 3 and were either untreated (n=8) or treated from d0 to d4 after HSCT with Cx25 (n=7) or with Cx122 (n=8). On d12, mice were sacrificed and memory, effector and naïve T cells were analyzed from splenocytes of grafted animals by flow cytometry. Gating strategy of (**A**) effector memory (defined as CD44⁺ CD62L⁻ cells), central memory (defined as CD44⁺CD62L⁺ cells), and naïve (defined as CD44⁻ CD62L⁺ cells) cells, among CD4⁺Foxp3⁻ cells and CD8⁺Foxp3⁻cells are shown for each group (**B**) PD-1 among CD4⁺ and CD8⁺ T cells according to Foxp3 expression and (**C**) Eomes and T-bet among CD4⁺Foxp3⁻PD-1⁺ and CD8⁺Foxp3⁻PD1⁺ T cells analyzed by flow cytometry.

IL-2/anti-IL-2 complexes effects on the distribution of naïve/memory cell populations and on the activation state of T cells collected from livers of transplanted animals.

B6C3F1 mice were lethally irradiated and grafted as for Figure 2 and were either untreated or treated from d0 to d4 after HSCT with Cx25 or with Cx122. On d12, mice were sacrificed and memory, effector and naïve T cells were analyzed from livers of grafted animals by flow cytometry. (A) Percentage of effector memory (defined as CD44+ CD62L- cells), central memory (defined as CD44+ CD62L+ cells), and naïve (defined as CD44- CD62L+ cells) cells, among CD4+Foxp3- cells, and CD8+Foxp3- cells are shown for each group; untreated mice (n=10), Cx25 (n=9) and Cx122 (n=10). (B) PD-1 among CD4+ and CD8+ T cells according to Foxp3 expression and (C) Eomes and T-bet expression among CD4+Foxp3-PD-1+ and CD8+Foxp3-PD1+ T cells were also analyzed. Shown are the cumulative data of two independent experiments; untreated mice (n=5), Cx25 (n=8) and Cx122 (n=8). Data are presented as the mean \pm SEM. Kruskal-Wallis tests were performed. *P < 0.05, **P < 0.01, ***P < 0.001.

IL-2/anti-IL-2 complexes inhibit pro-inflammatory cytokines production by regulatory T cells after HSCT.

B6C3F1 mice were lethally irradiated and grafted as for figures 2 and 3 and were either untreated (n=14) or treated from d0 to d4 after HSCT with Cx25 (n=16) or with Cx122 (n=17). On d12, mice were sacrificed and splenocytes were collected and then stimulated with PMA/ionomycin and golgi plug for 5 hours before analysis by flow cytometry. Gating strategy of TNF- α , IFN- γ and IL-17 expression in CD4+Foxp3-, CD4+Foxp3+ and CD8+Foxp3- T cells analyzed by flow cytometry.

Cx25 induces human Treg expansion in vitro after an allogeneic stimulation.

(A) 1 x 10⁶ CD2⁺ sorted cells were stained with the cell proliferation dye and cultured with 1x10⁶ allogeneic APCs (CD2⁻ sorted cells) in the presence of IL-2 or Cx25. (B) At day 5, CD4⁺, CD8⁺ T cells, CD56⁺ NK cell and Treg proliferations were evaluated in both CD4⁺ and CD8⁺ T cells and in NK cells. Treg proportion is defined by CD25⁺Foxp3⁺ expression among CD4⁺ T cells. Dot blot sum the data of two independent experiments. Kruskal-Wallis tests were performed. *P < 0.05, **P < 0.01.

IL-2Cxs efficacy depends on the level of donor T cell activation.

(**A**) Lethally irradiated BALB/c mice received allogeneic HSCT (10×10^6 BM cells plus 2×10^6 T cells) collected from B6 mice. Mice were untreated (n=4) or treated from d0 to d4 after HSCT with Cx25 (n=5) or with Cx122 (n=5). Survival curves (left) and area under the curve (AUC) of GVHD manifestations are evaluated for each mouse for all the duration of the experiment as for Figure 1. (**B** and **C**) Lethally irradiated B6C3F1 received semi-allogeneic HSCT (10×10^6 BM cells plus 2×10^6 T cells) as in Figure 1. Before infusion, CD25 expression was assessed on donor T cells (left). Mice were sacrificed at d4, spleen cells were collected and evaluated for CD25 expression on T cells; untreated mice (n=6), Cx25 (n=7) and Cx122 (n=7). (D) Lethally irradiated B6C3F1 received semi-allogeneic HSCT (10×10^6 BM cells plus 2×10^6 T cells) as in Figure 1. Mice were untreated (n=5) or treated from d7 to d11 after HSCT with Cx25 (n=5) or with Cx122 (n=5).