Impact of pinworm infection on the development of murine B-cell leukemia/lymphoma in the presence and absence of ETV6::RUNX1

by Briana A. Fitch, Jamilla Situ, Joseph L. Wiemels, Scott C. Kogan, and Mi Zhou

Received: Dec 14, 2022.
Accepted: June 15, 2023.

Publisher’s Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors’ final approval; the final version of the manuscript will then appear in a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
Impact of pinworm infection on the development of murine B-cell leukemia/lymphoma in the presence and absence of \textit{ETV6::RUNX1}

Briana A Fitch1, Jamilla Situ2, Joseph L. Wiemels3, Scott C. Kogan2,4 and Mi Zhou2

1Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA

2Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA

3Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Keck School of Medicine, Los Angeles, CA

4Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA

Authorship contributions

B.A.F. and S.C.K. conceived the study; B.A.F., M.Z., and S.C.K. designed the study; B.A.F., M.Z., and J.S. performed experiments and analyzed data; and B.A.F. wrote the manuscript with contributions by S.C.K. and M.Z. All authors interpreted data, reviewed the work critically, and revised the manuscript.

Acknowledgements

We thank Sony Biotechnology for providing guidance on design of antibody staining panels for spectral flow cytometry and use of Sony SP6800 Spectral Analyzer, and Todd Whitehead and Kamir Hiam for useful discussions. This work was supported by National Institutes of Health/National Cancer Institute grants R01-CA185058 (S.C.K. and J.L.W.) and F31-CA221157 (B.F).
Corresponding Author:

Mi Zhou (M.Z.), MD and Ph.D., Specialist in Department of Laboratory Medicine, University of California, San Francisco, CA.

Email: mi.zhou@ucsf.edu

Disclosure of Conflicts of Interest

No relevant conflicts of interest to declare.

Data Sharing Statement:

The original data and protocols are available to other investigators without restriction.
B-cell acute lymphoblastic leukemia (B-ALL) is the most common malignant disease in childhood with a peak age at 2-6 years old. A two-step model has been proposed for the development of childhood B-ALL\(^1\). The first step is represented by an early somatic genetic rearrangement, such as the \textit{ETV6::RUNX1} fusion gene, followed by a broad range of secondary mutational events driven by environmental stimuli (including infection and abnormal cytokine release from immunologically untrained cells)\(^1\). The involvement of at least two discrete steps suggests that B-ALL may be preventable for genetically initiated infants, who could be protected from harmful postnatal environmental stimuli.

In the past decades, infections have been regarded as the most impactful environmental stimuli in the etiology of childhood B-ALL. Common pathogens may drive secondary mutations in genetically predisposed subjects\(^2\). Experimental models of infection can be leveraged in xenograft and animal models that closely resemble the pathophysiology of childhood B-ALL. For example, two animal studies demonstrated that transgenic mice (with the \textit{ETV6::RUNX1} fusion or with \textit{Pax5}\(^{-/-}\) heterozygosity) only developed B-ALL when they were exposed to common infections, although with incomplete penetrance\(^3,4\). These past studies indicate that infections can act as important promoters of B-ALL development in the context of genetic predispositions. However, exposure to pathogens early in life via childhood contacts (daycare, microbiome) may modulate immune reactivity and decrease risk\(^2\). Through a serendipitous observation, we found that the impact of pinworm infection on leukemogenesis was markedly different depending on the presence or absence of a common human somatic genetic change.

Pinworms are a commonly found intestinal helminth in laboratory animals and the control of these pathogens in animal holdings is quite difficult\(^3\). We performed retrospective analysis of the latency and incidence of leukemia/lymphoma of two strains of mice during and after a pinworm outbreak in an SPF facility (\textbf{Figure 1A}). \textit{Cdkn2a}\(^{-/-}\) and \textit{ETV6::RUNX1} \textit{Cdkn2a}\(^{-/-}\) (referred to as \textit{E6R1} \textit{Cdkn2a}\(^{-/-}\) in current work and \textit{Cre} \textit{TA} \textit{Cdkn2a}\(^{-/-}\) in past work\(^4\)) mice were
maintained on the FVB/N strain background and were age- and sex-matched for each survival experiment. In line with the details of our animal use protocol, body condition scoring, clinical signs, and a diagnosis of neoplasia were used, in consultation with veterinarians, to identify animals that had reached our predefined study endpoints. A gross necropsy was performed to identify potential sources of illness. Selected tissues were preserved through Formalin Fixed Paraffin Embedding (FFPE) and stained with hematoxylin & eosin. Diagnoses were based upon gross necropsy and histopathology. If gross necropsy findings suggested a hematopoietic neoplasm, single cell suspensions of involved tissues were cryopreserved in medium containing 10% DMSO. Diagnoses were based upon gross necropsy and histopathology with additional diagnostic information obtained by immunophenotyping when necessary. All experiments were performed following institutional review and approval by the UCSF Institutional Animal Care and Use Committee.

We previously reported that ETV6::RUNX1 expression cooperates with Cdkn2a deletion to promote the development of B-ALL in mice (Figure 1B). After 2013, the leukemogenic effect of E6R1 expression was no longer observed, as demonstrated by two independent experiments showing overlap (Figure 1C) or minimal separation (Figure 1D) between the Cdkn2a−/− and E6R1+Cdkn2a−/− survival curves. Review of the infection records in the SPF facility revealed that an outbreak of the pinworm Aspicularis was detected by fecal floatation testing of sentinels during the timeframe when decreased latency for leukemia/lymphoma had been observed in E6R1+Cdkn2a−/− mice in comparison with Cdkn2a−/− mice. Following the outbreak of Aspicularis, all mice in the room were treated with the broad spectrum antihelmintic fenbendazole. The diminished effect of E6R1 on promoting leukemia/lymphoma development was observed after the eradication of pinworm.

We then prospectively investigated the impact of intentional pinworm exposure on leukemogenesis. To determine whether pinworm infection could restore the leukemogenic effect of E6R1 in the Cdkn2a−/− model, 4-week-old Cdkn2a−/− and E6R1+Cdkn2a−/− mice were
transferred from a SPF facility to an *Aspicularis*-infected conventional facility (also detected by fecal floatation testing of sentinels), where they were followed for survival (Figure 1A). In the context of pinworm infection, *E6R1*+ *Cdkn2a*− mice developed leukemia/lymphoma earlier and with a higher incidence than *Cdkn2a*− mice (Figure 1E). Together, these survival studies indicate a different impact of pinworm infection in the development of leukemia/lymphoma in *Cdkn2a*− and *E6R1 Cdkn2a*− mice.

Given the well-established role of the *E6R1* mutation in cooperating with radiation, chemicals, and infectious exposures to promote the development of lymphoid malignancies, we had hypothesized that pinworm infection would promote leukemogenesis and have a stronger effect in *E6R1*+ *Cdkn2a*− mice than in *Cdkn2a*− mice. We examined this hypothesis by aggregating the survival cohorts from the studies shown in Figure 1. Pinworm-free SPF-facility mice (cohorts shown in Figures 1C and 1D) were aggregated to serve as pinworm-free controls (Figure 2A). For comparison, survival cohorts of pinworm-infected mice (Figures 1B and 1E) were also aggregated. Consistent with individual experiments, only pinworm-infected mice demonstrated a statistically significant difference in the development of leukemia/lymphoma between *E6R1*+ *Cdkn2a*− mice and *Cdkn2a*− animals (Figure 2B).

In contrast to our hypothesis, leukemia/lymphoma-free survival curves revealed that pinworm infection elicited a protective effect in *Cdkn2a*− mice (Figure 2C) that is not observed in *E6R1*+ *Cdkn2a*− mice (Figure 2D). In pinworm-infected *Cdkn2a*− mice, the median latency of leukemia/lymphoma development increased from 305 days to 365 days (Table 1). In contrast, pinworm infection was associated with a decrease in the median latency of leukemia/lymphoma in *E6R1*+ *Cdkn2a*− mice from 253 days to 231 days (Table 1). Although there was an effect on latency, the incidence of leukemia/lymphoma was not impacted by pinworm infection (Supplemental Table 1). Of note, pinworm exposure yielded a modest impact on leukemia/lymphoma free survival curves of *Cdkn2a*− mice (Figure 2C) and *E6R1*+ *Cdkn2a*− mice (Figure 2D), but the cumulative bidirectional effect of pinworm resulted in a significant...
difference between these two mouse strains (Figure 2B). Because Cdkn2a^{-/-} mice are susceptible to other cancers in addition to leukemia/lymphoma, we examined cancer-free survival curves: there was no difference between Cdkn2a^{-/-} and E6R1⁺ Cdkn2a^{-/-} mice in SPF conditions (Supplemental Figure 1A), but there was a statistically significant difference in the presence of pinworm (Supplemental Figure 1B). Interestingly, pinworm was associated with divergent responses: protection in Cdkn2a^{-/-} mice (Supplemental Figure 1C) and a promotion in E6R1⁺ Cdkn2a^{-/-} (Supplemental Figure 1D). Neither E6R1 (Supplemental Figures 2A-B) or pinworm exposure (Supplemental Figures 2C-D) had a statistically significant impact on the development of solid tumors. Taken together, this work demonstrates a protective effect of an infection on leukemia/lymphoma development of Cdkn2a null mice in the absence of the E6R1 mutation, but that this protection is reversed in the presence of this common prenatally acquired genetic change.

The increased latency of leukemia/lymphoma in pinworm-exposed Cdkn2a^{-/-} mice is a novel in vivo demonstration of a protective role of pathogenic infection in a mouse model of B-ALL. These results build upon past findings, in which immune stimulation with CpG, a TLR9 agonist, protected against B-ALL in Eu-ret mice⁵. Microbial exposures that are capable of priming the early immune system to respond appropriately to infections have long been associated with reduced childhood B-ALL risk^{1,2}. Interestingly, pinworms have immunomodulatory properties, and their decades-long decline in western societies is inversely correlated with the rising incidence of B-ALL and other childhood immune disorders⁶. While the current study does not characterize the immune response to pinworm exposure in Cdkn2a^{-/-} mice, pinworm infections are well-described to stimulate anti-inflammatory immune responses that are characterized by the production of the cytokine interleukin-10 (IL-10) and T-regulatory cells (Tregs)⁷. As IL-10 is a protective factor for B-cell leukemia/lymphoma in humans⁸ and mice⁹, it is possible that pinworm-induced IL-10 and/or pinworm-induced microbial diversity provide protection against B-ALL in specific genetic settings. In addition to parasites, viral and
bacterial pathogens are also capable of supporting the gut microbiome and inducing production of IL-10 and Tregs10. It will therefore be interesting to determine whether the protection garnered from parasitic infection can be acquired through other infectious pathogens that stimulate similar immune pathways.

The gut microbiome is well known for shaping immune responses through structural components or metabolites of its constituent bacteria11 and has recently been identified as a player in the development of B-ALL12. Considering the impact of helminth infections in shaping the composition of the gut microbiome13,14, it is likely that pinworm exerts a protective effect in \textit{Cdkn2a}-/- mice by enhancing microbial diversity. Although the timing of pinworm introduction varied [from birth (\textbf{Figure 1B}) or from weaning age (\textbf{Figure 1E})], we did not find evidence for a role of timing differences in leukemia/lymphoma development. We instead observed a strong genetic-environmental interaction, in which \textit{E6R1} expression completely inhibited the protective effect of pinworm exposure in \textit{Cdkn2a}-/- mice. This result may be explained by the recently described ability of \textit{E6R1} to induce a state of microbial dysbiosis12 or the well-established role of \textit{E6R1} in converting B cell precursors into B-ALL2. Pinworm and probiotic interventions that are currently being investigated for the prevention of childhood autoimmune disorders may also have the capacity for childhood B-ALL prevention2. Future studies should be aimed at understanding how genetics and infectious exposures interact to impact the gut-immune axis. This will be an important step toward leveraging the full potential of preventative strategies in children who are genetically predisposed to B-ALL.
References

Table 1. Median cancer latency of \textit{Cdkn2a}^{-/-} and \textit{E6R1}^{+} \textit{Cdkn2a}^{-/-} mice housed in pinworm-free SPF or pinworm-infected facilities

<table>
<thead>
<tr>
<th></th>
<th>SPF \textit{E6R1}^{+} \textit{Cdkn2a}^{-/-}</th>
<th>Pinworm \textit{E6R1}^{+} \textit{Cdkn2a}^{-/-}</th>
<th>SPF \textit{Cdkn2a}^{-/-}</th>
<th>Pinworm \textit{Cdkn2a}^{-/-}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N=55)</td>
<td>(N=44)</td>
<td>(N=76)</td>
<td>(N=54)</td>
<td></td>
</tr>
<tr>
<td>Cancer</td>
<td>248</td>
<td>202</td>
<td>218</td>
<td>259</td>
</tr>
<tr>
<td>Leukemia/Lymphoma</td>
<td>253</td>
<td>231</td>
<td>305</td>
<td>365</td>
</tr>
</tbody>
</table>
Figure 1. Pinworm exposure drives differences in leukemia/lymphoma development between Cdkn2a^{-/-} and E6R1⁺ Cdkn2a^{-/-} mice. (A) Timeline of individual survival studies following Cdkn2a^{-/-} and E6R1⁺ Cdkn2a^{-/-} mice in SPF and Conventional facilities relative to the 2013 fenbendazole treatment. (B) Survival curves of leukemia/lymphoma development in Cdkn2a^{-/-} (n=34) and E6R1⁺ Cdkn2a^{-/-} (n=22) mice housed in an SPF facility during a pinworm outbreak prior to fenbendazole treatment. Arrows indicate chronological order of survival studies. The year in brackets corresponds to the euthanasia date of the last mouse to develop illness in each cohort. (C-D) Survival curves from two independent experiments of mice housed in an SPF facility after pinworm was eradicated with fenbendazole treatment. 2016-2017: Cdkn2a^{-/-} (n=58) and E6R1⁺ Cdkn2a^{-/-} (n=40); 2017: Cdkn2a^{-/-} (n=18) and E6R1⁺ Cdkn2a^{-/-} (n=15). (E) Survival curve from one experiment in which Cdkn2a^{-/-} (n=20) and E6R1⁺ Cdkn2a^{-/-} (n=22) mice were housed in an SPF facility for 4 weeks, then transferred to a conventional facility for exposure to pinworm bedding. Log-Rank (Mantel-Cox) test analysis was applied to survival curves.

Figure 2. Impact of pinworm exposure on leukemia/lymphoma development in the absence and presence of E6R1. Cumulative survival curves showing combined data from Figure 1 of four independent experiments of mice housed in a pinwormfree SPF facility or pinworminfected facility. Leukemia/lymphomafree survival for (A) SPFhoused (open symbols) and (B) pinwormexposed (filled symbols) Cdkn2a^{-/-} mice (black triangles) and E6R1⁺ Cdkn2a^{-/-} mice (orange squares). Leukemia/lymphomafree survival for genotype matched (C) Cdkn2a^{-/-} mice and (D) E6R1⁺ Cdkn2a^{-/-} mice. SPF Cdkn2a^{-/-} mice (n=76), SPF E6R1⁺ Cdkn2a^{-/-} mice (n=55), pinwormexposed Cdkn2a^{-/-} mice (n=54), and pinwormexposed E6R1⁺ Cdkn2a^{-/-} mice (n=44). Log-rank (Mantel-Cox) test was applied to survival curves.
Supplemental Table 1. Disease outcomes of *Cdkn2a*−/− and *E6R1+ Cdkn2a*−/− mice housed in SPF or pinworm-infected facilities.

<table>
<thead>
<tr>
<th></th>
<th>SPF E6R1+ Cdkn2a−/− (N=55)</th>
<th>Pinworm E6R1+ Cdkn2a−/− (N=44)</th>
<th>SPF Cdkn2a−/− (N=76)</th>
<th>Pinworm Cdkn2a−/− (N=54)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer</td>
<td>42 (76%)</td>
<td>41 (93%)</td>
<td>56 (74%)</td>
<td>44 (81%)</td>
</tr>
<tr>
<td>Leukemia/Lymphoma</td>
<td>28 (51%)</td>
<td>23 (52%)</td>
<td>23 (30%)</td>
<td>14 (26%)</td>
</tr>
</tbody>
</table>
Supplemental Figure 1. Pinworm exposure is associated with increased latency of cancer development in the absence of $E6R1$ and is associated with decreased latency of cancer development in the presence of $E6R1$. Cumulative survival curves showing combined data from Figure 1 of four independent experiments of mice housed in a pinworm-free SPF facility or pinworm-infected facility. Cancer-free survival for (A) SPF-housed (open symbols) and (B) pinworm-exposed (filled symbols) $Cdkn2a^{-/-}$ mice (black triangles) and $E6R1^+ Cdkn2a^{-/-}$ mice (orange squares). Cancer-free survival for genotype matched (C) $Cdkn2a^{-/-}$ mice and (D) $E6R1^+ Cdkn2a^{-/-}$ mice. SPF $Cdkn2a^{-/-}$ mice (n=76), SPF $E6R1^+ Cdkn2a^{-/-}$ mice (n=55), pinworm-exposed $Cdkn2a^{-/-}$ mice (n=54), and pinworm-exposed $E6R1^+ Cdkn2a^{-/-}$ mice (n=44). Log-rank (Mantel-Cox) test was applied to survival curves.
Supplemental Figure 2. Impact of pinworm exposure on solid tumor development in the absence and presence of E6R1. Cumulative survival curves showing combined data from Figure 1 of four independent experiments of mice housed in a pinworm-free SPF facility or pinworm-infected conventional facility. Solid tumor-free survival for (A) SPF-housed (open symbols) and (B) pinworm-exposed (filled symbols) Cdkn2a^{−/−} mice (black triangles) and E6R1⁺ Cdkn2a^{−/−} mice (orange squares). Solid tumor-free survival for genotype matched (C) Cdkn2a^{−/−} mice and (D) E6R1⁺ Cdkn2a^{−/−} mice. SPF Cdkn2a^{−/−} mice (n=76), SPF E6R1⁺ Cdkn2a^{−/−} mice (n=55), pinworm-exposed Cdkn2a^{−/−} mice (n=54), and pinworm-exposed E6R1⁺ Cdkn2a^{−/−} mice (n=44). Log-rank (Mantel-Cox) test was applied to survival curves.