Radical surgery and venetoclax + azacitidine in an octogenarian with acute myeloid leukemia

by Florian Ramdohr, Robert Hennings, Astrid Monecke, and Sabine Kayser

Received: October 24, 2022.
Accepted: December 6, 2022.

Publisher's Disclaimer. E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
Radical surgery and venetoclax + azacitidine in an octogenarian with acute myeloid leukemia

Florian Ramdohr,1 Robert Hennings,2 Astrid Monecke,3 Sabine Kayser1,4,5*

1Medical Clinic and Polyclinic I, Hematology and Cellular Therapy, University Hospital Leipzig, Leipzig, Germany
2Department of Plastic, Aesthetic and Special Hand Surgery, Clinic and Polyclinic for Orthopaedics, Traumatology and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany
3Department of Pathology, University Hospital Leipzig, Leipzig, Germany
4NCT Trial Center, National Center of Tumor Diseases, German Cancer Research Center (DKFZ), Heidelberg, Germany
5Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany

Correspondence:
Sabine Kayser, MD
Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
Phone: +49621/37069492, Fax: +49621/37069496
E-mail: s.kayser@dkfz-heidelberg.de

Keywords: acute myeloid leukemia, treatment, azacitidine, venetoclax, surgery

Word count: Text: 1195 words; Table/Figure count: 0/2; References: 10

Version: December 1st, 2022

Funding: The authors acknowledge support from the University of Leipzig within the program of Open Access Publishing.
Authorship: F.R. and S.K. were responsible for the concept of this paper, contributed to the literature search data collection, treated the patient, analysed and interpreted data, and wrote the manuscript. R.H. treated the patient and critically revised the manuscript. A.M. performed research and critically revised the manuscript. All authors approved the submission.

Conflict-of-interest: All authors declare no competing conflict of interest.

Data sharing statement: Questions regarding data sharing should be addressed to the corresponding author.
A 79-year-old female patient was admitted in December 2020 to our hospital due to swelling and redness of her left forearm (Figure 1). Besides arterial hypertension and a history of sleep apnoea her medical history was unremarkable. Laboratory evaluation revealed a decreased white blood cell count (WBC) of 0.8 x10^9/L (range, 3.5-9.8 x10^9/L), hemoglobin value of 11.6 g/dl (range, 13.5–17.5 g/dl) and platelet count of 112 x10^9/L (range, 140–360 x10^9/L). Differential blood cell count showed 16% myeloid blast cells. Moreover, laboratory evaluation revealed acute renal failure with a creatinine of 128 µmol/l (range 45-84µmol/l) and massively elevated CRP of 229 md/l (range <5mg/l). Renal insufficiency improved rapidly and creatinine values normalized within five days due to the application of intravenous fluids. Bone marrow evaluation showed myeloid blast cells of 58%. Cytogenetic analysis revealed a complex karyotype (90,XXXX,-17,-21[12]/ 47,XX,+8[8]/46,XX[7]) and molecular analysis an IDH2 R172K mutation. All other tested mutations (CEBPA, IDH1, NPM1, FLT3-ITD, FLT3-TKD) were unmutated. Thus, the diagnosis of acute myeloid leukemia (AML) with myelodysplasia-related abnormalities was made and the patient was classified as high-risk.

The swelling and reddening on the left forearm were diagnosed as phlegmone and treatment with broad-spectrum antibiotics (clindamycin 600mg orally, three times daily; meropenem 1g intravenously, three times daily) as well as mold-active antifungal prophylaxis with posaconazole was started immediately. A computed tomography (CT) scan showed extensive phlegmonous-inflammatory changes of the skin and tissue. Thus, surgical intervention with rapid debridement was urgently indicated. The infection was split surgically, showing a partially avital muscle extensor carpi ulnaris without signs of necrotizing fasciitis. Besides necrosectomy, partial resection of the muscle and fascia were performed, which was covered with a synthetic wound dressing (Figure 2). Histopathological analysis revealed an avital
tissue of the muscle and tendon without signs of malignancy, bacteria or necrotizing fasciitis. After surgical intervention, all fingers were moveable and sensitivity was intact. Overall, two surgical wound revisions had to be performed within five days with additional necrosectomy, resulting in a severe lesion, which had to be covered with an autologous mesh graft from her left thigh. We started AML treatment with AZA 75mg/m² subcutaneously, days 1-5 and VEN 100mg orally (dose ramp-up), days 1-18 on day seven after diagnosis of AML and improvement of the wound conditions. VEN/AZA were dose reduced due to severe infection as well as concurrent antifungal prophylaxis with posaconazole. No signs of tumor lysis syndrome occurred. Besides, therapy with broad-spectrum antibiotics was continued. In the following two weeks, three additional surgical interventions were required for the installation and changing of a vacuum pump. Surprisingly, the wound conditions improved drastically despite AML treatment (Figure 3). Thus, antibiotics were reduced to monotherapy with meropenem 1 g intravenously three times daily on day 13 after admittance. Overall, only two packed red blood cells were transfused during the first cycle of VEN/AZA.

First AML response assessment was performed on day 13 after start of VEN/AZA treatment. Bone marrow cytology revealed a decline of myeloid blast cells to 11%. Thus, VEN was stopped on day 18 to allow further wound healing and ingrowing of the mesh graft. Repeated bone marrow evaluation on day 20 showed a further decline to 9% myeloid blast cells. The patient was still bicytopenic with WBC of 0.9 x10⁹/L (range, 3.5-9.8 x10⁹/L), hemoglobin value of 7.3 g/dl (range, 13.5–17.5 g/dl), whereas platelet count rose spontaneously to 194 x10⁹/L (range, 140–360 x10⁹/L). The vacuum pump was removed after 23 days after installation. Hematologic recovery with WBC 2.2 x10⁹/L, hemoglobin value of 8.9 g/dl and platelet count of 238 x10⁹/L occurred 12 days after VEN was stopped.
Thus, the patient could be discharged 43 days after admission to our hospital. Antibiotics were reduced to oral prophylaxis with ciprofloxacin 500 mg twice daily. After discharge, the patient was followed-up routinely in our outpatient department for continuation of VEN/AZA treatment in reduced dosage (AZA 75 mg/m² subcutaneously, days 1-5; VEN 100 mg orally once daily, days 1-14, repeated every 28 days) due to concurrent antifungal prophylaxis with posaconazole. After the second cycle of VEN/AZA treatment bone marrow evaluation revealed a complete remission (CR). Besides, the \textit{IDH2}-mutation was no longer detectable by digital droplet PCR (sensitivity of 1:10,000 for mutated to wild type \textit{IDH2}).3 The therapy was continued for two more cycles. Thereafter, VEN/AZA treatment was suspended for 6 weeks due to patient’s wish. In the following cycles the dosage of VEN/AZA was continued as before to prevent hematologic toxicity (AZA 75 mg/m² subcutaneously, days 1-5; VEN 100 mg orally once daily, days 1-14; repeated every 28 days). Treatment with VEN/AZA was well tolerated and no grade 3 or higher toxicity occurred.

The wound improved further and finally healed after roughly 5 months (Figure 4). A recent follow up phone call in September 2022 revealed that the patient is feeling well roughly 20 months after start of treatment. VEN/AZA treatment is continued as stated above in a close to home outpatient setting and AML is still in CR.

The combined therapy of VEN and hypomethylating agents (HMA) has led to high CR and improved OS rates in newly diagnosed AML not eligible for intensive chemotherapy as compared to monotherapy with HMA,4 leading to the recent Food & Drug Administration and European Medicine Agency approval of venetoclax in combination with HMA or low-dose cytarabine for older adults with newly diagnosed AML.5 Particularly, impressive survival benefit was shown in patients with \textit{IDH2} or
NPM1 mutated AML. Indeed, continued treatment with VEN/AZA resulted in a deep and durable molecular remission in our patient, who harbored an IDH2 mutation at diagnosis. Thus, VEN/AZA seems currently the best option for older patients with newly diagnosed AML and one of the afore mentioned mutations.

One of the main obstacles in AML therapy and one of the main reasons for early death are infections due to immunosuppression of the underlying disease as well as myelotoxic effects of the therapy. We here present the first case of successful VEN/AZA treatment despite a severe infection, requiring repetitive surgical interventions.

Venetoclax-based regimens are associated with significant myelosuppression, requiring dose adjustment. The currently recommended dose of VEN in case of concurrent treatment with strong CYP3A4 inhibitors (posaconazole) is 50 mg/daily. In our case, we decided to reduce both, the duration of VEN/AZA as well as the dose of VEN due to significant comorbidities and concurrent antifungal prophylaxis with posaconazole. Antifungal and antibiotic prophylaxis was given only in case of neutrophil count below 0.5 x10^9/L. The patient tolerated the therapy very well without any further toxicities or need to use granulocyte colony stimulating factor. Currently, we continue with lower-intensity VEN/AZA treatment indefinitely.

To date, the optimal treatment duration of venetoclax-based lower-intensity regimens is unknown. However, patients aren’t particularly enamored with the concept of treatment with parenteral azacitidine and venetoclax extending indefinitely. Thus, finding some way of using oral azacitidine with venetoclax would seem to be an urgent clinical approach. Some patients with VEN-sensitive genomics, such as NPM1 and IDH2 mutations and who are in deep remission might also be candidates for treatment discontinuation and active surveillance.
In conclusion, VEN/AZA seems to be safe and feasible, even in patients with severe infections, although larger data are needed for further evaluation.

References

Ramdohr et al. Acute myeloid leukemia and forearm phlegmone

Figure 1: Picture of left arm of the patient with acute myeloid leukemia

Panel A: at diagnosis showing an infection with edematous swelling and redness
Panel B: after first surgery showing the synthetic wound dressing.

Figure 2: Picture of the left arm of the patient with acute myeloid leukemia

Panel A: autologous mesh graft
Panel B: complete wound healing roughly five months after diagnosis of acute myeloid leukemia.