CMV-specific T-cells following haploidentical transplants: reshaping a repertoire by half

by Richard J. O'Reilly and Zaki Molvi

Received: November 10, 2022.
Accepted: November 22, 2022.

Publisher's Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors’ final approval; the final version of the manuscript will then appear in a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
CMV-specific T-cells following haploidentical transplants: reshaping a repertoire by half

Authors: Richard J. O’Reilly¹,² & Zaki Molvi²

Author Affiliations:

¹Bone Marrow Transplant Service, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
²Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY

RJO and ZM wrote the editorial.

Corresponding author:
Richard J. O’Reilly, MD
Memorial Sloan Kettering Cancer Center
1275 York Avenue
New York, NY 10065
E-mail: oreillyr@mskcc.org

Running Head: CMV-specific T-cells Following HCT

Word count for text: 998
Word count for abstract: N/A
Figures/tables: 0
References: 10
Disclosures: None
Studies addressing the impact of HLA disparities on reconstitution of antigen-specific immunity following allogeneic HLA haploidentical hematopoietic cell transplant (HCTs) are very limited. The paper by Tassi et al\(^1\), in this issue is the first to analyze the pattern of HLA restrictions exhibited by antigen-specific T-cells emerging in a cohort of adult patients following HLA haploidentical transplants for hematological malignancies. This report provides important new evidence documenting limitations to the repertoire of CMV epitope-specific HLA-restricted T-cells achievable following HLA-haploidentical HCTs.

In 1974, Zinkernagel and Doherty\(^2\) first demonstrated that T-cells recognize viral antigens only when presented by self MHC alleles. Subsequent studies demonstrated that T-cells bearing such MHC restricted antigen-specific receptors (TCRs) are positively selected during their development through interactions with cortical epithelial cells in the thymus.\(^3\) Thereafter, they are negatively selected to deplete potentially autoreactive T-cells specific for self-peptides presented by MHC alleles expressed by thymic dendritic cells and other antigen-presenting cells. After selection, the surviving, mature but naive T-cells are exported to the periphery, and maintained in homeostasis until activated in response to antigenic challenge.\(^4\)

While HLA restriction is now well recognized as a hallmark characteristic of TCR\(\alpha/\beta\) antigen-specific T-cells, information regarding the contributions of T-cells restricted by shared vs. donor or host unique alleles to reconstitution of pathogen-specific immunity following HLA partially matched or haplo-identical HCTs is minimal. Prior studies were almost exclusively focused on reconstitution of T-cell immunity in children with severe combined immunodeficiency diseases (SCID) who had received either T-cell depleted grafts from an HLA-haploidentical parent or a fully allogeneic fetal liver, usually administered after no or minimal conditioning. Because the thymic epithelium is of host origin and, in murine models, positive selection depends on the interaction of the TCRs of T-cell precursors with MHC alleles of thymic cortical epithelial cells,\(^4\) it would be expected that donor-type tetanus toxoid antigen-specific T-cells developing in the host thymus would be selectively restricted by HLA alleles shared by donor and host and that T-cells restricted by host unique alleles would not be detected. In fact, T-cell responses to tetanus presented by host unique HLA alleles were equal to responses to epitopes presented by HLA alleles shared by donor and host\(^5,6\). However, prior to transplant, the thymus in infants with SCID is embryonal, without evidence of lymphoid or other hematologic elements. Its development, including corticomedullary differentiation, is only initiated after transplant. It is thus possible that concomitant differentiation of a functional thymic cortical epithelium which is induced by prothymocytes\(^7\) could also be influenced by cells in the donor graft to permit positive selection of developing T-cells recognizing host unique HLA alleles.

In contrast, the CMV-specific T-cells analyzed by Tassi et al\(^1\) were from adult recipients of HLA haploidentical HCTs whose thymuses would be fully differentiated from birth to time of transplant. In these patients, CMV-specific T-cells isolated by dextramers selectively recognized epitopes presented by shared or donor unique HLA alleles. As observed in murine models, no CMV-specific T-cells restricted by host-unique HLA alleles were detected, either early or up to 3 years post transplant, likely reflecting the failure of T-cell progenitors in the graft bearing TCRs specific for epitopes presented by donor unique HLA alleles to be engaged and
positively selected by cortical epithelial cells of the host thymus. Furthermore, while CMV-specific T-cells restricted by donor-unique HLA alleles (D-restricted CMV-specific T-cells) were detected in most patients who received transplants from CMV-seropositive donors, they were detected in only a minority of recipients of transplants from seronegative donors, consistent with D-restricted CMV-specific T-cells being derived from mature T-cells in the graft. Furthermore, these T-cells expanded later than CMV-specific T-cells restricted by shared alleles, persisted for only 6 months and maintained a less differentiated phenotype. In contrast, CMV-specific T-cells restricted by shared alleles expanded rapidly in most (but not all) patients, and to a greater degree. They also persisted at high frequency for ≥ 1 year and contained more T$_{EM}$ and T$_{EMRA}$ cells. These findings support the author’s hypothesis that the donor CMV-specific T-cells restricted by shared HLA alleles are responding to CMV epitopes presented by infected host type non-hematopoietic cells or residual antigen presenting cells. They also indicate a primary role for CMV-specific T-cells restricted by shared HLA alleles in the initial and sustained control of CMV reactivation post transplant. However, the proportion of T-cells restricted by shared alleles that are derived from T-cell precursors maturing in the host thymus and their repertoire remain to be determined.

Transplants from HLA non-identical unrelated and HLA haplo-identical related donors are increasingly invoked for the treatment of patients lacking a matched related or unrelated donor. Furthermore, such transplants have been associated with higher incidences of CMV infection and associated non-relapse mortality. In part, this increased incidence can be ascribed to GVHD or use of more intensive treatment with immunosuppressive drugs to control it, or to impairments to early reconstitution associated with T-cell depleted grafts, in vivo T-cell depletion by pre-transplant ATG or post-transplant cyclophosphamide. However, the findings of Tassi et al1 raise the possibility that the inability of virus-specific donor T-cells to recognize or be primed to epitopes presented by host-unique alleles could also retard or impair development of an effective immune response. We previously described a recipient of a haploidentical HCT with an EBV+ lymphoma of host origin who failed treatment with donor EBVCTLs that were restricted only by an HLA allele not shared by the patient but responded to 3rd party EBVCTLs restricted by a shared allele. To what degree such limitations contribute to the heightened risk of CMV or other latent viral infections in haploidentical transplant recipients warrants examination since the repertoire of CMV-specific T-cells contracts over time and, in the graft, can be limited to responses to immunodominant viral epitopes presented by a single HLA allele. The repertoire of donor T-cells developing in the host thymus may also be constricted by GVHD and older age. Thus, if epitopes presented by shared alleles are less immunogenic, early recovery of functional CMV-specific T-cells may be delayed or inadequate to control disease.

