Monoclonal gammopathy of increasing significance: time to screen?

by Lucia Y. Chen, Mark Drayson, Christopher Bunce, and Karthik Ramasamy

Received: July 19, 2022.
Accepted: October 28, 2022.

Publisher's Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors’ final approval; the final version of the manuscript will then appear in a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
AUTHOR CONFLICTS OF INTEREST

MD owns shares in Abingdon Health. LYC, CB, KR have no conflicts of interest to declare.
Monoclonal gammopathy (MG) is a frequently detected clonal B-cell or plasma cell disorder. Importantly, every multiple myeloma (MM) case is preceded by MG. Although clinical algorithms now allow earlier treatment of patients with biomarkers of malignancy before MM-induced tissue damage (CRAB) occurs, most patients are still diagnosed late. It is important to revisit how MG should be managed in clinical practice and whether screening is required. As the prevalence of MG and other medical co-morbidities both rise with increasing age, the degree of contribution of MG to disease states other than malignant progression is often unclear. This can lead to monitoring lapses and under recognition of the organ dysfunction that can occur with monoclonal gammopathy of clinical significance (MGCS). Therefore, models of progression to MM and/or MGCS require further refinement. Whilst currently MG is detected incidentally, a case for screening has been made with ongoing studies in this area. Screening has the potential benefit of earlier detection and prevention of both MGCS and delayed MM presentations, but important drawbacks include the psychosocial impact on individuals and resource burden on healthcare services. MG terminology should transition alongside our increasing understanding of the condition and genomic characterisation that have already begun to revise the MG nomenclature. The biology of MG has been poorly understood and is often inferred from the biology of MM, which is unhelpful. We review the literature and case for MG screening in this paper. In particular, we highlight areas that require focus to establish screening for MG.
INTRODUCTION

The incurable plasma cell malignancy multiple myeloma (MM) accounts for 2% of all cancer diagnoses and cancer deaths in the UK\(^1\) and the US\(^2\). MM is consistently preceded by well-defined earlier states termed monoclonal gammopathy of undetermined significance (MGUS) and smouldering multiple myeloma (SMM)\(^3,4\). The recognition that a period of MGUS universally heralds MM, alongside the advent of less toxic MM therapies, have strengthened the argument for earlier intervention. As a result, therapeutic algorithms for MM have transitioned over the last decade to treating earlier stages of disease, in patients with biomarkers of malignancy and no end-organ damage using standard anti-myeloma therapy\(^5\). However, the increasing focus on early intervention in MM, highlights the need to re-assess methods of early detection, including screening.

Monoclonal gammopathy (MG) describes a clonal B-cell or plasma cell dyscrasia leading to the production of a monoclonal protein discernible against a background of polyclonal immunoglobulins. Traditionally, MG is considered a benign premalignant condition and therefore MG-research has thus far concentrated on drivers of malignant transformation. However, there is growing evidence that MG can cause organ damage via mechanisms independent of tumour growth. For example, there has been increasing attention on the ability of small but ‘dangerous’ B-cell clones to cause paraprotein-mediated tissue damage, a phenomenon termed monoclonal gammopathy of clinical significance (MGCS). Furthermore, several large epidemiological studies report excess morbidity and mortality associated with a diagnosis of MG, with uncertain biological mechanisms\(^6\). Thus, accumulating evidence suggests that MG is of increasing significance.

Here, we outline current understanding, describing both the malignant and non-malignant mechanisms by which MG can cause tissue damage. Specifically, we question whether active systematic identification of MG cases through population or targeted screening, should be considered in the context of the growing evidence of its clinical importance.

MG: IS IT HARMFUL ENOUGH TO WARRANT SCREENING?

The mechanisms by which different types of MG (Table 1) cause organ dysfunction and morbidity are incompletely understood. Although, MG can lead to malignant transformation and paraprotein-mediated tissue damage, it has also been repeatedly associated with increased occurrence of other diagnoses (MGCS). The biological explanation for MGCS is even less well understood, it is possible that the mechanisms leading to cancerous and non-cancerous consequences overlap.

Malignant transformation
The prevalence of MG is 3.2% in those over 50 years and increases with age\(^7,^8\). Non-IgM MG typically progresses to multiple myeloma (MM) at a rate of 1% per year\(^9\), light-chain MG progresses to MM less frequently at a rate of around 0.3% per year\(^10\), whilst IgM MG progresses to B-cell malignancies such as Waldenström macroglobulinaemia (WM) at a rate of 1.5% per year\(^11\). Rare cases of IgE and IgD MGUS/MM have also been described\(^12,^13\).

Progression from MG to plasma cell or B-cell malignancies is the principal cause of MG-related morbidity and mortality, and the risk of malignant progression is not uniform\(^9\). At present, there are two major risk predictors for progression to MM: i) genomic and ii) secreted protein profiles. Genomic myeloma-defining events, including MYC activation, driver gene mutations and mutant apolipoprotein B mRNA-editing enzyme, catalytic polypeptide (APOBEC) activity, help to distinguish indolent MG from MG with malignant potential\(^14\). In addition, secreted protein profiles are established risk factors of malignant transformation and include abnormal serum free light chain (SFLC) ratio, paraproteinaemia >15g/l, and non-IgG sub-type\(^15,^16\). Patients with no risk factors and those with all three risk factors (high-risk) have a 5% and 58% absolute risk respectively of MM progression at 20 years\(^15\). Further studies have identified baseline SFLC >100mg/L\(^16\), immunoparesis\(^17\) and pathological SFLC N-glycosylation\(^18\) to be additional risk factors for progression. Risk stratification using select parameters has since led to a distinct management pathway for high-risk MGUS involving additional investigations and more frequent follow-up in secondary care\(^19\).

Several risk stratification models of progression from IgM MG and smouldering WM to WM have also been proposed\(^20,^21\) and include measures of disease burden, such as bone marrow infiltration and IgM level, as well as immunoparesis, albumin and beta-2-microglobulin levels. Wild-type MYD88 status has also been shown to be an independent risk factor for progression\(^21\) and mortality\(^22\) despite correlating with lower tumour burden at diagnosis.

Paraprotein-mediated tissue damage

MGCS has become a well-recognised entity that includes a wide range of non-cancerous MG-associated clinical presentations\(^23,^24\). The mechanisms reported thus far, include deposition of monoclonal immunoglobulin or amyloid fibrils (for example, in Type I cryoglobulinaemia and light chain amyloidosis; AL amyloidosis), autoantibody activity of the immunoglobulin (for example, anti-MAG antibodies in IgM-related neuropathy) and aberrant complement-activation (for example, in C3-glomerulonephritis and atypical haemolytic uraemic syndrome)\(^23\). Among the most recognised forms of MGCS are AL amyloidosis, monoclonal gammopathy of renal significance (MGRS),
monoclonal gammopathy of neurological significance (MGNS) and monoclonal gammopathy of cutaneous significance.

AL amyloidosis has an incidence of around 12 cases per million person-years and a prevalence of around 30,000 to 45,000 cases in Europe and the US25. As with many forms of MGCS, AL amyloidosis remains underdiagnosed and earlier detection is key to improving survival26. Presenting symptoms are often non-specific, therefore a low index of clinical suspicion alongside screening tests for organ damage, such as albuminuria and cardiac biomarkers, can be key to an early diagnosis. Despite advancing treatments, reported mortality rate is 25% within 6 months of diagnosis25.

MGRS represents a spectrum of MG-induced renal conditions diagnosed via renal biopsy and is defined as a haematological clonal disorder producing a nephrotoxic monoclonal protein27,28. In an Austrian cohort of nearly 3000 MGUS patients, the rate of MGRS (around 80% biopsy-proven) was 1.5%29,30, and the estimated prevalence of MGRS is 0.5% of people aged 70 or older in the general population31. However, accurate case detection is impacted by the rising prevalence of chronic kidney disease with age32 and difficulty in obtaining histological diagnoses in an older cohort with multiple co-morbidities.

MGNS is defined as neuropathy caused by a monoclonal protein, and often requires neurology specialist input for diagnosis28. Peripheral neuropathy is a frequent finding in MG patients, with up to 30-50% prevalence in IgM MG patients, 5% in IgG MG, 15% in IgA MG33. Furthermore, large population studies have demonstrated that MG patients have a 2.7-fold risk of peripheral neuropathy compared to matched controls34 and 5.9-fold risk of chronic inflammatory demyelinating polyradiculoneuropathy35. Despite diagnostic challenges, up to 50% of demyelinating neuropathies are likely linked to a causal IgM MG36, with anti-myelin-associated glycoprotein (MAG) neuropathy accounting for a large proportion of cases.

Cutaneous manifestations of MG are classified into several subgroups. Group I conditions are pathologically caused by malignant or clonal plasma cells (for example, polynueopathy, organomegaly, endocrinopathy, monoclonal gammopathy and skin disease; POEMS), group II conditions are strongly associated with a MG, group III conditions are anecdotally linked to MG and group IV conditions are related to immunoglobulins or M-proteins that may or may not be clonal37. Treatments are generally specific to the dermatological condition, aside from group I/II conditions where clonally directed treatment may be employed.
The true incidence and prevalence of MGCS is unknown due to suboptimal monitoring, lack of established diagnostic criteria and the reliance on multiple specialties to identify MGCS through a high index of suspicion. The main challenge in MGCS is distinguishing symptoms caused directly by the MG clone and its resultant monoclonal protein, and those that are merely coincidental; for example, only half of patients with clinically suspected MGRS have the condition on biopsy38. Evidence suggests that treatment of the underlying plasma or B-cell clonal disorder can ameliorate symptoms and prevent irreversible organ damage in MGCS28. Further studies, both large-scale epidemiological and biological, are required to fully understand the aetiology of MG-related disorders. In order to achieve this, thought needs to be given as to how cohorts of MG patients can be established, and we hypothesise that improving detection and monitoring of MG will enhance recognition of MGCS cases to this end.

\textit{Other MG-related morbidity}

Higher mortality rates in MG unrelated to malignant progression have been observed. A UK cohort study of 2,193 newly diagnosed MG patients demonstrated excess morbidity and mortality associated with the diagnosis39. MG patients had a 5-year overall survival of 71.9\% compared to 80.1\% in age-matched controls and were significantly more likely to have a higher comorbidity index score39. MG patients also had significantly higher rates of hospital attendance, particularly for renal and rheumatological issues, both prior to and after diagnosis39. Several large population-based studies show similar findings of increased morbidity and mortality associated with MGUS6,40,41; for example, in a Swedish population study, MG patients had a survival ratio of 0.70 compared to matched population controls6. In keeping with these findings, results from the PROMISE study and Mass General Brigham Biobank investigating patients at high-risk of developing MG, demonstrated an increased all-cause mortality associated with patients who had screen-detected MG42.

The reason for increased morbidity and mortality in non-malignant MG patients is unclear but may be related to the increased rate of other medical conditions. The link between MG and bone fractures as well as osteoporosis is well established43-45, and a recent study demonstrated a detection rate of MGUS of 1 in 13 patients with osteoporotic fractures in the fracture clinic screened for MM46. Further studies have also confirmed a higher risk of thrombophlebitis44 and a two-fold risk of developing viral and bacterial infections47. MG patients in the Swedish cohort had a significantly increased risk of co-existing medical conditions such as ischaemic heart disease, and renal disorders6. Furthermore, a recent Korean study demonstrated a concurrent diagnosis of hypertension, hyperlipidaemia, diabetes, and osteoarthritis in 80\% of patients with MG followed up for 10 years48.
The challenge with these MG disease-associations is demonstrating causality, given that most patients being tested for MG are older and more likely to have pre-existing medical diagnoses, leading to inherent bias in these studies. However, as epidemiological evidence continues to accumulate, it becomes increasingly important to initiate thorough investigation into the possible biological causes of MGCS-associated morbidity and define an ICD-10 code to capture data more reliably. Clonal haematopoiesis of indeterminate potential (CHIP), an analogous but more genetically defined precursor state, has in recent years been associated with increased atherosclerosis, with loss of TET2 function in haematopoiesis proven to accelerate atherogenesis in murine models. This demonstrates the potential of clonal haematopoietic disorders to cause organ pathology and supports the need to further investigate the relationship between MG and other disease states. The aetiological role of chronic inflammation and immune stimulation in MG is plausible and needs to be explored.

MG – THE IMPORTANCE OF EARLY DETECTION AND INTERVENTION

That MM is preceded by MG creates the opportunity for early intervention and possible prevention. The argument for early detection of MG includes improving quality of life for MM patients through reduced end-organ complications and potentially improving survival of MM patients. In addition, early identification of MG could in theory lead to earlier intervention and better outcomes for non-malignant MG-related morbidities and MGCS.

Less than 10% of MM patients are diagnosed at the MG stage and is estimated that by the time patients are formally diagnosed with MG, the clonal disorder has been present for at least 10 years. Currently, a diagnosis of MM requires significant burden of disease meaning that, de facto, most MM diagnoses occur in a late stage of disease. Real-world data from Europe has demonstrated that around 85% of patients present with International Staging System (ISS) stage II/III disease and over 50% present with at least 2 bone lesions. Further cohort studies have shown that the median time from symptom onset to MM diagnosis is around 4 to 6 months, and whilst this diagnostic delay was not associated with adverse survival, it likely contributed to the significant burden of MM-related complications seen in a large-proportion of patients at diagnosis. Therefore, by the time most patients are diagnosed with MM, the time for early intervention has been missed. Screening would lead to earlier detection of MG, including MGCS, MM and WM, however current guidelines do not recommend this due to the lack of clinically proven low-toxicity interventions at the precursor stage.

There is some evidence that knowledge of prior MG before MM diagnosis can improve survival, although whether this is solely due to early detection remains unclear. MG patients under regular
monitoring have been shown to suffer significantly fewer major complications (such as dialysis-use, cord compression and fracture) at MM diagnosis, and significantly improved disease-specific and overall survival when compared to patients with MG who were not actively managed. However, these studies may suffer from lead-time bias. Importantly, the first screening study for MG, iStopMM, has shown higher detection rates of B- and plasma-cell malignancies through screening; however, whether this enhanced detection will lead to clinical benefit is unknown. Further refinement of risk prediction in MG, using novel genomic and biochemical biomarkers, may help define a high-risk MG group that would benefit from high-intensity follow-up and early intervention, as well as a low-risk MG group who may need less frequent or no monitoring.

Studies investigating low-toxicity treatments at the precursor stage are ongoing. Treatment of SMM with lenalidomide-dexamethasone and single-agent lenalidomide has been shown to improve progression-free survival in two randomised controlled trials and delay organ damage. However international consensus on the treatment of SMM has not been reached. Whilst the National Comprehensive Cancer Network (NCCN) recommend lenalidomide treatment for SMM, the European Myeloma Network (EMN) do not advocate treatment of SMM outside of a clinical trial setting. A phase II study (CENTAURUS) demonstrated the safety and activity of anti-CD38 monoclonal antibody daratumumab as a single agent in intermediate and high-risk SMM patients. A small phase II study of carfilzomib, lenalidomide, dexamethasone including high-risk SMM patients demonstrated minimal residual disease (MRD) negative responses in these 11 of 12 patients, which is significant given MRD-negativity correlates with improved survival. There is an ongoing debate surrounding the goal of treating SMM; to delay progression versus cure, and ongoing studies are addressing this. Studies investigating treatment at the MG stage are also underway. For example, phase II studies investigating treatment of high-risk MG patients with both daratumumab (NCT03236428) and isatuximab (NCT02960555) are underway and a phase I trial evaluating the role of rifaximin in patients with MG (NCT03820817) Potential opportunities exist for early intervention studies in MG targeting the microenvironment. This strategy is supported by single-cell RNA sequencing studies that have identified early changes in the bone marrow immune microenvironment in MG. A study on patients with bi-clonal gammopathy highlighted that MG clones can be more difficult to eliminate with standard myeloma treatment due to having a very low proliferative fraction. A combination approach with simultaneous targeting of the clone and its resident microenvironment may be required and warrants further investigation.

The value of early detection in asymptomatic WM (including IgM MGUS and smouldering WM [SWM]) is less clear. There is evidence that the progression rate of SWM to WM decreases after the first 5 years and prior studies have also shown that the overall survival of patients with SWM and the general population is similar. Accordingly, early treatment before the symptomatic stage in WM
has not thus far been recommended, and therefore the benefits of early detection of IgM MG to prevent malignant progression may be limited. However, the role of early detection in improving outcomes for IgM MGCS patients requires further study. Enhanced pick-up of IgM MG may lead to earlier diagnosis of IgM-related neuropathy as well as other IgM-related disorders, where clonally targeted treatments have been effective.

MG – IS SCREENING WARRANTED?

Does MG meet screening criteria?

The purpose of screening is to identify asymptomatic individuals at higher risk of developing a particular disease so that they may benefit from early intervention that can lead to improved survival or quality of life. The benefits to those who screen positive must also outweigh any potential harm to those who screen negative. International screening principles have been widely used to guide the development of screening programmes, such as the breast, cervical and colorectal cancer screening initiatives in the UK, which have been shown to reduce mortality. MG fulfils many of the criteria for screening (see Table 2). However, two main contentions exist: firstly, whether the collective health risk of MG on a population level is great enough to warrant screening, and secondly, whether an effective intervention for MG exists to reduce mortality and morbidity. These contentions to MG screening require reappraisal in the context of new emerging evidence. It is also important to consider population versus targeted screening, which may have implications on the risk-benefit ratio of testing.

Who, if anyone, should we screen for monoclonal gammopathy?

As early interventions for MG continue to develop, it is also important to consider which population group would benefit the most from screening. A recent review of NHS screening programmes highlighted targeted screening as a means of improving cost-effectiveness and reducing the risk-to-benefit ratio by focussing on individuals at a higher-risk of developing the condition. Several well-established risk factors for MG provide a strong basis for defining a population for targeted screening including, increasing age, male gender, black ethnicity and having a first-degree relative with MG. Other potential risk factors for MG such as, high BMI and immune-related conditions, may further contribute to delineating a high-prevalence group suitable for screening. The PROMISE study is an example of targeted screening of those within a higher-prevalence group, and includes adults aged over 40, identified as Black/African American or with a family history of myeloma or a precursor state. Interim three-year data on the first 2960 participants
screened demonstrated a 10% prevalence of MG\(^{42}\), a higher rate than previous estimates in the Minnesota cohort\(^{7}\), which therefore helps to corroborate this approach.

An alternative strategy would be opportunistic screening, for example combining serum protein electrophoresis with other primary care screening blood tests, such as cholesterol. A recent study demonstrated an increased prevalence of MG (5.3%) in unselected emergency medical admissions\(^{82}\), which also highlights medical inpatients as a possible group for opportunistic screening\(^{83}\). However, further prospective evidence is required to assess the long-term implications of opportunistic screening as an approach.

Population screening carries the highest resource burden and risk of psychosocial impact on otherwise healthy individuals. A population-based MG screening study ongoing in Iceland, iStopMM, has screened 75,422 individuals over the age of 40 and identified 3725 individuals with MGUS\(^{58}\). Patients were randomised to three arms: no follow-up, standard follow-up according to current practice, or an intensive diagnostic and follow-up pathway. After three years of follow-up, MG patients in the intensive follow-up arm of the study had significantly higher detection rates of lymphoproliferative disorders, specifically SWM, SMM and MM\(^{84}\), demonstrating that early detection of these malignancies through screening is possible. Results from longer-term follow-up are required to determine whether this enhanced detection translates to better patient outcomes.

Limitations to screening of monoclonal gammopathy

Despite significant advances in early intervention and risk-identification, the potential adverse effects of screening for MG need to be considered carefully. A consensus evidence-based treatment for MG that improves morbidity and mortality by preventing malignant progression or allowing for earlier treatment of MGCS is required. The diagnosis of a pre-malignant condition through positive MG screening in otherwise "well individuals" would inevitably create health anxiety. Both the iSTOPMM and PROMISE studies have incorporated patient questionnaires to measure the psychosocial impact of screening for MG. Thus far, the PROMISE study has shown no significant difference in cancer-related anxiety or health-related quality of life in participants who screened positive for MG\(^{42}\), however much longer follow-up is required to determine the true psychological impact of screening in these patients. As with all screening programmes, there is the potential of over-diagnosis\(^{85}\), which leads to the possibility of over-treatment. Furthermore, MG screening would likely create significant time and cost burden on primary care clinicians requesting and interpreting the test results, as well as specialist teams monitoring high-risk MG patients. Uncovering unexpected MG cases would increase referrals to myeloma and cancer specialist services, at a great cost to already strained health services. The resource burden to specialist teams could be
offset if screening were shown to be successful in preventing cases of advanced malignant disease. Furthermore, a recent study identified that using a modified monoclonal antibody threshold of 10g/L and an extended range of serum FLC ratios (0.15-3.36) excluded 89% of MGUS but importantly still identified 99% of MM patients86. Thus, a strategy for screening for MG that does not overload haematology referrals querying MM appears possible.

MG – UNANSWERED QUESTIONS AND FUTURE STEPS

Genomic studies have begun to provide explanation for the heterogeneity of MG and SMM87. Recent advances in low-input WGS in MG and MM has led to the delineation of two distinct entities within asymptomatic MG: those with low burden of myeloma-defining genomic events and indolent phenotype, and those with sufficient myeloma-defining genomic events to cause malignant transformation88. Increasing availability and use of these technologies could provide enhanced molecular inspection of the plasma and B-cell clones in MG patients. Yet to be understood, are the mechanisms that trigger an indolent phenotype MG to become a malignant phenotype and whether there are genetic drivers associated with MGCS.

FISH panels frequently fail to identify genetic abnormalities in MG patients. Use of targeted gene panels such as the Myeloma genome NGS panel which comprises 228 genes/exons for mutations, 6 regions for 40 translocations, and 56 regions for copy number abnormalities could overcome this limitation89. This panel can be employed in a routine diagnostic laboratory and detailed genomic characterisation could serve as a potential predictor of disease progression. Recent observation of higher rates of pathological N-glycosylation noted in cold haemagglutinin disease as well as AL amyloidosis provides vital routes to develop proteomic research to better understand causality of these post translational modifications90.

It is inescapable that a major stumbling block to introducing MG-screening approaches is the lack of early intervention options that could be applied in MG to prevent progression to either MGCS or MM. If such safe and affordable interventions were available, the arguments for screening would be significantly changed. Making this a reality will require novel research focussed on the biological features of MG, that are likely to be distinct from MM, that represent a potential Achilles’ heel for an MG clone. For example, one biological question yet to be addressed is: what is the repopulating cell responsible for maintaining early-stage MG? In MM, it is widely accepted that plasma cells are the propagating cells91. However, the involvement of the B-cell hierarchy in earlier stage plasma cell dyscrasias has been under-investigated and may provide potential interventional strategies in earlier stage disease.
MG TERMINOLOGY

As the genomic and biological understanding of MG progresses it is important that the field also updates the MG terminology to reflect this transition. There is increasing recognition of the need to move from “cancer burden to cancer genomics”\(^{92}\). With the recent characterisation of myeloma-defining genomic events using WGS\(^{14}\), three simplified genetically-defined (rather than clinically-defined) myeloma categories have been proposed: MG, early MM and MM\(^{88}\). Using in-depth genomic and biological characterisation of monoclonal gammopathies, MGCS-defining events and features of ‘benign’ MG should be identified (Figure 1).

CONCLUSION

Recent research has started to unpick the ‘undetermined’ aspect of MGUS, with accumulating evidence that MG is heterogeneous and more clinically significant than initially thought\(^{88,93}\). MG is perfectly poised as a condition in which early detection and intervention could make a significant impact on the morbidity and mortality of patients by preventing irreversible organ damage. Despite recent advances such as improved risk-stratification of MG patients, effective treatment of asymptomatic SMM and enhanced awareness of MGCS, further prospective data is needed before widespread screening of MG can be recommended. Results from a single randomised trial of screening for MG (iStopMM) are eagerly awaited and a large prospective observational MG study in the UK is underway (SECURE study; NCT05539079). We believe more trials of MG screening and monitoring are warranted, as enhanced risk stratification of both malignant progression and identification of MGCS is likely to provide benefit to patients. Continual re-appraisal of the balance between risk and benefit of a targeted screening programme for MG is required as the field of early intervention continues to evolve. Further research into the biology of MG as an independent entity is important to understanding MGCS-defining genomic and molecular events and will help to inform methods of effective early therapeutic intervention.
REFERENCES

Table 1. Definitions of conditions relating to Monoclonal Gammopathy (MG)

<table>
<thead>
<tr>
<th>Monoclonal Gammopathy (MG) disorder</th>
<th>Definition</th>
<th>References</th>
</tr>
</thead>
</table>
| Non-IgM Monoclonal Gammopathy of Undetermined Significance (MGUS) | 1. Serum monoclonal immunoglobulin ≤ 3 g/dL
2. Plasma cells in the bone marrow ≤ 10%
3. Absence of: lytic bone lesions, anemia, hypercalcemia, and renal impairment. | 5 |
| IgM MGUS | 1. Serum monoclonal immunoglobulin ≤ 3 g/dL
2. Lymphoplasmacytic cells in the bone marrow ≤ 10%
3. Absence of: constitutional symptoms or symptoms and signs of hyper-viscosity, anemia or lymphadenopathy | 5 |
| Light chain MGUS | 1. Abnormal free light chain ratio (≤ 0.26 or ≥ 1.65) with increased level of the appropriate involved light
2. Increased concentration of involved light chain
3. Complete loss of heavy chain immunoglobulin expression | 5, 23 |
| Monoclonal Gammopathy of Clinical Significance (MGCS) | Organ dysfunction or damage caused by a MG-related clonal disorder via different mechanisms | 4, 23 |
| Monoclonal Gammopathy of Renal Significance (MGRS) | 1. Haematological clonal disorder producing a monoclonal paraprotein that causes renal injury
2. Absence of: light chain cast nephropathy, or monoclonal plasma cell infiltration in kidney biopsy | 24, 25 |
| Monoclonal Gammopathy of Neurological Significance (MGNS) | Peripheral neuropathy associated with a monoclonal paraprotein, without other obvious cause | 24, 25 |
| Monoclonal Gammopathy of Cutaneous Significance | Varied group of MG-associated cutaneous presentations, some of which demonstrate a strong pathological link | 37 |
| Smouldering Multiple Myeloma (SMM) | 1. Serum paraprotein (IgG or IgA) ≥ 30 g/l or urinary M-protein >500 mg/24 h and/or clonal bone marrow plasma cells 10-59%
2. Absence of myeloma-defining events* or amyloidosis | 5 |

*Myeloma-defining events (SLiM-CRAB criteria): [S] ≥ 60% plasma cells in bone marrow, [Li] Involved/uninvolved light chain ratio ≥ 100 (provided the involved light chain is >100 mg/l), [M] 2 or more focal lesions on MRI (>5 mm in size), [C] Hypercalcaemia: (>2.75 mmol/l or >0.25 mmol/l higher than upper limit of normal), [R] Renal insufficiency: (serum creatinine >177 µmol/l or creatinine clearance <40 ml/min), [A] Anaemia: Hb <100 g/l or 20 g/l below lower limit of normal, [B] 1 or more lytic bone lesion on X-ray, CT or PET/CT (>5 mm in size)
Table 2. Interrogation of suitability of asymptomatic monoclonal gammopathy for screening using Wilson and Junger’s principles of early disease detection

<table>
<thead>
<tr>
<th>Wilson & Junger principles of early disease detection</th>
<th>Criteria met?</th>
<th>Explanation</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>The condition sought should be an important health problem</td>
<td>Contentious</td>
<td>MM is an incurable life-limiting haematological malignancy and accounts for 2% of all cancer deaths in the UK. MGUS is not infrequent; age-standardised prevalence in UK estimated at 8.7/100,000 and prevalence increases with age. However, absolute risk of progression to MM remains low at 0.5-1% per year. MG can lead to morbidity through MGCS independent of progression to MM.</td>
<td>1, 6, 8, 9, 39, 45</td>
</tr>
<tr>
<td>There should be an accepted treatment for patients with recognised disease</td>
<td>Contentious</td>
<td>Identification and routine monitoring of MGUS may improve outcomes and survival upon progression to MM. Risk stratification helps to identify high-risk MGUS patients who have higher rates of progression to MM and in whom early intervention may be more valuable. There are no proven low toxicity treatments to eliminate MGUS clones. Treatment of early MM at the asymptomatic SMM stage improves survival. MGUS patients have excess morbidity and mortality independent of progression to MM; screening may help early identification of MGCS such as MGRS and prevent irreversible end-organ damage.</td>
<td>15, 59, 57, 60, 62</td>
</tr>
<tr>
<td>Facilities for diagnosis and treatment should be available</td>
<td>Yes</td>
<td>Phlebotomy and laboratory services are available and widely accessible</td>
<td></td>
</tr>
<tr>
<td>There should be a recognisable latent or early symptomatic stage</td>
<td>Yes</td>
<td>It is well established that MGUS constantly precedes MM as a precursor state</td>
<td>3</td>
</tr>
<tr>
<td>There should be a suitable test of examination</td>
<td>Yes</td>
<td>Diagnosis of MG via peripheral blood serum protein electrophoresis and immunofixation has a high sensitivity and specificity</td>
<td>94</td>
</tr>
<tr>
<td>The test should be acceptable to the population</td>
<td>Yes</td>
<td>The blood test diagnosis for MG is non-invasive and convenient</td>
<td></td>
</tr>
<tr>
<td>The natural history of the condition should be adequately understood</td>
<td>Yes</td>
<td>Large longitudinal studies have helped our understanding of the natural history of MGUS. Further studies are required to understand MGCS</td>
<td>9</td>
</tr>
<tr>
<td>There should be an agreed policy on whom to treat as patients</td>
<td>Yes</td>
<td>IMWG guidelines for MGUS</td>
<td>19</td>
</tr>
<tr>
<td>The cost of case-finding should be economically balanced in relation of possible expenditure on medical care as a whole</td>
<td>Unknown</td>
<td>Future prospective studies may help to determine whether screening for MG can be cost-effective. The blood test required for diagnosis is inexpensive</td>
<td></td>
</tr>
<tr>
<td>Case-finding should be a continuing process and not a "once and for all" project</td>
<td>Yes</td>
<td>If MG screening is justified and of proven benefit in a particular population, continual screening could need to be organised</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. Proposed schema for classification of monoclonal gammopathies

MG: monoclonal gammopathy
MDE: myeloma-defining event
MGCS: monoclonal gammopathy of clinical significance
MM: multiple myeloma
§ Yet unknown are the cell intrinsic/extrinsic factors that lead to the persistence and/or progression of plasma/B-cell clones
☐ MGCS-defining events, e.g. genomic/proteomic changes, are not yet defined and require further research
☐ MDEs have recently been described
△ The interplay and relationship between benign MG, MGCS and MM/WM is not fully understood; it is not clear whether the genomic and biological drivers of these conditions are shared or distinct
Plasma or B-cell clone

No MDE/MGCS

MGCS-defining changes*

MDE+

MYD88L265P, other genomic/proteomic drivers

Benign MG

MGCS

MM

WM