The real risk of secondary non-Hodgkin lymphoma following Classical Hodgkin lymphoma

by Ahmet Dogan

Received: September 14, 2022.
Accepted: October 7, 2022.

Publisher's Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors’ final approval; the final version of the manuscript will then appear in a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
The real risk of secondary non-Hodgkin lymphoma following Classical Hodgkin lymphoma.

Ahmet Dogan

Memorial Sloan-Kettering Cancer Center, New York, NY, USA

Classical Hodgkin lymphoma (CHL) is B-cell lineage lymphoid malignancy. The majority of the patients are diagnosed between 15 and 30 years of age, followed by another peak in adults aged ≥55 years. Most cases of classic Hodgkin lymphoma are curable by modern treatments.¹ However therapeutic modalities such as radiotherapy and chemotherapy used to achieve this high rate of cure have side effects in the long term, especially in young patients.² The leading causes of long-term toxicity caused by therapy include cardiovascular disease and secondary malignancies such as breast cancer and therapy related myeloid neoplasms. In addition, case control and registry studies suggest that CHL patients may have familial predisposition and germline susceptibility to develop additional lymphoid malignancies.³

Previous studies, including a large cohort study with long-term and complete follow-up, showed that the risk of development of a secondary non-Hodgkin lymphoma (NHL) was increased significantly up to 13 fold in CHL patients compared to the general population.⁴

In this issue of Haematologica Boot et al. re-assesses this risk based on in-depth pathology review of a nationwide cohort of patients with CHL in the Netherlands.⁵ The study was designed to review the accuracy of pathological diagnosis of NHL following CHL. The cohort is restricted to 2669 CHL cases diagnosed between 2006-2013 where initial diagnosis of CHL can be confirmed by review of pathology reports. 54 of the 2669 cases of CHL (2%) had a subsequent diagnosis of NHL. The expert pathology review was restricted to the 54 cases where both the original CHL diagnosis and subsequent NHL diagnosis was available.

The review confirmed CHL diagnosis and subsequent NHL in 25 cases. Interestingly 6 of the cases were biologically, and very likely clonally, related to the original CHL such as primary mediastinal large B-cell lymphoma (PMBL) and mediastinal grey zone lymphoma (MGZL) suggesting that these would be best considered relapses of the same neoplastic disorder rather that unrelated secondary neoplasms.⁶ 18 out of 19 remaining cases were different histologies of NHL, presumably representing true secondary malignancies.

In 29 out of 54 cases, initial diagnosis of CHL was not confirmed. The wrong diagnoses included common mimics of CHL such as EBV positive Hodgkin-like cells frequently seen in peripheral T-cell lymphomas and EBV-associated large B-cell lymphomas, CD30 expressing T-cell lineage neoplasms such as anaplastic large cell lymphoma, and CD30 positive immunoblasts which can be seen in reactive/inflammatory conditions. As a result of revisions of original pathological diagnosis, the authors calculate that, in this cohort, the standardized incidence ratio of developing NHL after CHL was significantly lower, at 3.61 (CI 2.29-5.42); p=0.002) compared to 7.79 (5.78-10.3) based on original data.
The study highlights the significance of high quality pathology data and expert review in large scale epidemiological studies, especially, in the context of secondary malignancies. As such studies have important implications for surveillance guidelines for patients with prior cancer diagnosis, rigorous methods to address the quality of pathology data is essential.

Secondly, the findings stress the importance obtaining biopsies for pathological work-up at relapse setting in CHL as these may reveal not only phenotypic shift as exemplified by cases diagnosed as PMBL or GZL but also other distinct histologies which may become apparent in relapse biopsies such as T-cell lymphomas or EBV-driven B-cell lymphomas. The authors point out that the misdiagnoses was associated with a number of clinicopathological features including advanced age, generalized lymphadenopathy at presentation (stage III/IV disease) and the presence of EBV infection. Such features, in suspected relapse of CHL, should prompt comprehensive work-up with histopathological examination to address the diagnostic pitfalls highlighted in this study.

Some of the important issues remain unanswered by the study. No expert review of the cases diagnosed as CHL (n=2,615) without a subsequent diagnosis of NHL was performed. Of these, 289 cases relapsed with CHL. The relapsed CHL cases showed clinicopathological features similar to patients misdiagnosed as CHL but actually represented other NHL. Although the rate of misdiagnosis of CHL is low, around 6-7%\(^7\), it is likely that given the size of the cohort 150 cases may have been misdiagnosed without expert review. Therefore, it is difficult to establish a more accurate estimate of NHL incidence in CHL patients without broader pathology review either focusing on relapsed cases, or ideally, all cases diagnosed as CHL. In a small subset of the cases additional material for review and additional work-up was not available; the expert review was restricted to pathology report review which may undermine the findings.

With the caveats above, Boot et al. make an important contribution to the field not only by showing importance of thorough pathology assessment for epidemiological studies of lymphoid neoplasms but also by emphasizing the pitfalls in diagnosis of CHL and their clinical significance.
REFERENCES