Unique pathologic features and gene expression signatures distinguish blastoid high-grade B-cell lymphoma from B acute lymphoblastic leukemia/lymphoma

by Lianqun Qiu, Jie Xu, Pei Lin, Evan N. Cohen, Guilin Tang, Sa A. Wang, Mahsa Khanlari, Wei Wang, Joseph D. Khoury, Sergei Konoplev, C. Cameron Yin, Jeffrey L. Jorgensen, Francisco Vega, L. Jeffrey Medeiros, and Shaoying Li

Received: June 24, 2022.
Accepted: October 26, 2022.

Publisher's Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
Unique pathologic features and gene expression signatures distinguish blastoid high-grade B-cell lymphoma from B acute lymphoblastic leukemia/lymphoma

Lianqun Qiu, Jie Xu, Pei Lin, Evan N. Cohen, Guilin Tang, Sa A. Wang, Mahsa Khanlari, Wei Wang, Joseph D. Khoury, Sergej Konoplev, C. Cameron Yin, Jeffrey L. Jorgensen, Francisco Vega, L. Jeffrey Medeiros, Shaoying Li

Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX

Number of Figures: 3
Word of Text: 1569
Running title: 3-Point scoring system for blastoid HGBL
Keywords: Blastoid high-grade B-cell lymphoma; B-lymphoblastic leukemia/lymphoma, immunohistochemistry score, gene expression signature
Conflicts of Interest: The authors have disclosed that they have no relationships with, or financial interest in, any commercial companies pertaining to this article.

Corresponding author:
Shaoying Li, MD
Associate Professor
The University of Texas MD Anderson Cancer Center
Department of Hematopathology
1515 Holcombe Boulevard
Houston, Texas 77030-4009
Email: SLi6@mdanderson.org
Tel: 713-792-2601
Fax: 713-563-3166
Author Contribution

LQ collected data, analyzed the data, and wrote the manuscript; JX, PL, ENC, GT, SAW, MK, WW, JDK, SK, CCY, JLJ, FV contributed data and edited the manuscript. LJM contributed data and wrote the manuscript. SL designed the study, collected and analyzed the data, supervised the study and wrote the manuscript. All authors reviewed and approved the manuscript.

Data-sharing statement

Data are available for sharing upon request to the corresponding author.

Acknowledgments

The study was partially supported by Faculty Startup Fund (SL) and Research Grant (LQ and SL) from the Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center.
High-grade B-cell lymphoma (HGBL) encompasses two categories based on genetic features: HGBL with *MYC, BCL2*, with/without *BCL6* rearrangements (HGBL-DH), and HGBL-not otherwise specified (HGBL-NOS)[1]. A small subset of cases of both categories show a blastoid morphology (designated as blastoid HGBL here), which is rare and not well characterized [2]. The immature morphology often overlaps with other blastoid B-cell neoplasms, like B-acute lymphoblastic leukemia/lymphoma (B-ALL) or blastoid mantle cell lymphoma. The distinction between blastoid HGBL and CD34 negative B-ALL can be very challenging, especially when blastoid HGBL expresses immature markers such as TdT and/or lacks surface light chains[3-6]. On the other hand, B-ALL cases may show unusual features such as lack of CD34 and/or TdT, bright CD38 and decreased or absence of CD10 [7, 8]. We previously studied 31 cases of blastoid HGBL initially presented in bone marrow and developed a 6-point scoring system and a diagnostic algorithm to aid in the differential diagnosis of blastoid B-cell neoplasms[4]. However, this 6-point scoring system was largely focused on flow cytometric parameters, which may not be available in every practice setting or every case. In addition, the underlying gene expression signature of blastoid HGBL versus B-ALL remains unexplored.

Here we collected 64 cases of blastoid HGBL with complete immunohistochemistry (IHC) studies. These cases involved nodal and/or extranodal sites and included 17 cases from a previously study [4]. This cohort included 39 men and 25 women with a median age of 60 years (range, 23-87 years), with 40% (25/64) being HGBL-NOS and 60% HGBL-DH. Thirty percent of the patients had a history of follicular lymphoma or other type of non-Hodgkin lymphoma. Eighty percent of patients showed extra-nodal site involvement at presentation, with bone marrow involvement in 75% (40/53) biopsied. A B-ALL comparison group (n=37) which were
disproportionally enriched with CD34-negative cases (51%) were included to serve the purpose of the study. The B-ALL group included 21 men and 16 women with a younger median age of 44 years (range 18 – 83). All B-ALL patients presented with bone marrow disease, although extramedullary involvement was seen in 50% of patients. None of the B-ALL patients had a history of B cell lymphoma.

By comparison with B-ALL, blastoid HGBL demonstrated distinctive immunophenotypic and molecular cytogenetic features. By immunohistochemistry, blastoid HGBL showed more frequent MYC and BCL6 expression than B-ALL cases (86% vs 27% and 67% vs 16%, respectively), but less frequent TdT expression defined by ≥5% positivity (12/64, 19% vs 18/21, 86%), with median (range) of 20% (5-60%) vs 70% (10-100%) (all p<0.0001). TdT expression was dim partial in blastoid HGBL in contrast to the strong diffuse in B-ALL (Figure 1). FISH analysis detected MYC-R in 75% cases of blastoid HGBL while none of the B-ALL cases had MYC-R. Blastoid HGBL more frequently had a complex karyotype than B-ALL cases (93% vs 45%, p=0.0001). But B-ALL-related translocations were exclusively seen in B-ALL cases, including BCR::ABL1 in 7 CD34+ B-ALL cases and MLL-R and translocations involving TCF3 (E2A) (n=10 each) in CD34-negative B-ALL cases. Targeted next-generation sequencing demonstrated TP53 was the most frequently mutated gene in blastoid HGBL, relatively more frequent than in B-ALL (35% vs 15%, p=0.17). Mutations in NRAS and KRAS were seen exclusively in B-ALL patients (24% and 18%, respectively) (p<0.05).

Detailed flow cytometric study may not be available for every blastoid B cell neoplasm or in every practice setting. Therefore, we developed a 3-point scoring system using 3 immunohistochemical markers, MYC, BCL6 and TdT. Expression of MYC, BCL6 and lack of TdT expression were assigned a score of 1 each. In a blastoid B cell neoplasm, a total score of ≥2
would support a diagnosis of blastoid HGBL and <2 favor a diagnosis of B-ALL (Figure 2).

Similar to the previously reported 6-point scoring system, MYC expression serves as a surrogate for MYC-R and presence of either one was sufficient for 1 point. Since the concordance rate of TdT between flow cytometry and immunohistochemistry was 95% in this cohort, TdT by either method can be used for this scoring system. Of the 64 blastoid HGBL cases, 59 (92%) cases had a score of ≥2 and 5 (8%) had a score of 1. The performance is similar between those with (44/48, 92%) and without MYC-R (15/16, 94%). In the 37 B-ALL cases, 34 had a score of <2 while 3 had a score of 2.

To validate the above scoring system and also to understand the underlying gene expression signatures associated with blastoid HGBL, RNASeq-based whole transcriptome profiling was performed on archived formalin-fixed paraffin-embedded tissue sections on a subset of cases utilizing extraction-free HTG EdgeSeq technology (HTG Molecular Diagnostics, Inc, Tucson, AZ). Differential expression analysis (DESeq2 package) revealed 4678 significantly differentially expressed genes between blastoid HGBL (n=52) and B-ALL (n=26) cases, of which, 2,199 (47%) and 2,479 (53%) genes were upregulated and downregulated, respectively (Figure 3A), and clustered in distinct regions by principal component analysis (Figure 3B). In blastoid HGBL, there was enrichment of genes in association with multiple signaling pathways when compared with B-ALL (Figure 3C), supporting distinct gene expression signatures in the two disease entities. These pathways and differentially expressed molecules are mostly responsible for the differential regulation of cell cycle progression in association with cell growth, differentiation, homeostasis and immune response, with predicted activation of the p53 and PI3K/AKT signaling pathways and inhibition of the ERK/MAPK signaling pathway.

Blastoid HGBL cases showed upregulation and enrichment in genes relevant for germinal center
B-cell maturation and differentiation, such as *MYC* (1.85-fold), *BCL6* (3.32-fold), *MS4A1 (CD20)* (2.89-fold), *PTPRC (CD45)* (2.20-fold) (*p*<0.05 for all, vs. B-ALL), consistent with their relatively increased protein expression levels. In contrast, B-ALL cases maintained high abundance of genes responsible for self-renewal of immature B cells at a precursor level. Six cases with unexpected scores by the 3-point scoring systems had HTG gene expression study performed, and their diagnosis were confirmed by the gene expression signatures for the 3 blastoid HGBL cases with a score of 1 and 3 B-ALL cases with a score of 2 (Figure 3D, arrows).

As such, this 3-point IHC focused scoring system demonstrated a comparable high-performance as the previous 6-point flow focused scoring system, and showed a sensitivity, specificity, positive and negative predictive values of 92%, 92%, 95% and 87% respectively for establishing a diagnosis of blastoid HGBL versus B-ALL. We therefore propose a diagnostic algorithm for the differential diagnosis of blastoid B cell neoplasms by incorporating this 3-point IHC focused scoring system (Figure 2). For rare extremely challenging cases with equivocal scores, correlation with all available clinicopathologic features is helpful.

This study aimed to improve our understanding of blastoid HGBL with a focus on the differential diagnosis of blastoid HGBL, either HGBL-DH or NOS, versus B-ALL. In general, lymphoma is a nodal-based disease that often occurs in adults, whereas B-ALL is a bone marrow-based disease and frequently affects children. However, blastoid HGBL often presents in or involves bone marrow, whereas up to 25% of B-ALL cases occur in adults, with extramedullary presentations in a subset of cases that often cause diagnostic challenges [9-11]. In this study, bone marrow presentation was present in one third of blastoid HGBL cases, mimicking the clinical manifestations of B-ALL patients. Although most B-ALL cases are CD34+ and easy to recognize, up to a third of B-ALL may lack CD34 expression, making the
differential diagnosis with blastoid HGBL difficult [7, 8]. Distinguish blastoid HGBL from B-ALL is important, since their treatment and prognosis are substantially different from each other. The diagnostic challenge not only lies in the similar blastoid morphology, but also arises in the overlapping immunophenotypic features between blastoid HGBL and B-ALL. A subset of blastoid HGBL cases may show an immature immunophenotype, such as TdT expression, decreased CD45, and absence of surface light chains, as shown in this study. On the other hand, B-ALL cases may show unusual features such as lack of CD34, CD10, TdT and bright CD38, particularly in B-ALL patients harboring translocations involving MLL and $TCF3$. Therefore, no single marker can distinguish blastoid HGBL from B-ALL with the exception of CD34. A scoring system simultaneously evaluating multiple markers is helpful for guiding the work-up and establishing a correct diagnosis. The 3-point scoring system is a simplified scoring system by IHC, which usually can be completed within 1-2 days of the biopsy and is widely available in general practice settings. The IHC-focused 3-point scoring system has an accuracy of 92% and is practically relevant and useful. The score systems were further validated by RNA-seq-based transcriptome profiling, which revealed more than 4,000 differentially expressed genes underlying the unique molecular signature of blastoid HGBL as compared with B-ALL. The 5th edition of the WHO classification of hematolymphoid neoplasms [12] does not recommend differentiate morphologic subtypes anymore due to the poor interpersonal reproducibility[13] while the ICC classification keeps the morphology subtypes [14]. So, this score system may also be useful for all HGBL, especially in bone marrow presentation. In addition, double/triple hit is extremely rare in B-ALL[15], therefore the presence of such would favor a diagnosis of blastoid HGBL.
In summary, blastoid HGBL cases have distinctive immunophenotypic, molecular and cytogenetic characteristics as compared with B-ALL. We proposed an immunohistochemistry-focused 3-point scoring system for the differential diagnosis of blastoid HGBL versus B-ALL, which were further validated by RNA-Seq-based gene expression profiling. We also reported the transcriptome profiling of blastoid HGBL cases as compared with B-ALL cases, revealing unique molecular signatures underlying the distinct biological processes involved in blastoid HGBL.
References

Figure legends

Figure 1. Comparison of morphologic and immunohistochemical features between blastoid HGBL and B-ALL. *Top panel:* A representative case of blastoid HGBL with marrow entirely replaced by blastoid lymphoma cells with a starry sky pattern and finely dispersed blastoid chromatin. The lymphoma cells were strongly and diffusely positive for BCL6 and MYC but negative for TdT (Upper). Occasional cases may be variably positive for TdT (Lower) in a small subset of lymphoma cells. *Lower panel:* In contrast, the lymphoblasts of a representative B-ALL case showed similar blastoid morphology but had an opposite immunophenotype: negative for BCL6 and MYC, and positive for TdT. (Magnifications: Column 1, Wright Giemsa stains, 100x; Column 2, H&E-stains, 50x; The rest: immunohistochemical stains, 50x).

Figure 2. Recommended algorithm for the differential diagnosis of blastoid B cell neoplasms. HGBL, high-grade B-cell lymphoma, B-ALL, B-acute lymphoblastic leukemia/lymphoma, MCL, mantle cell lymphoma, D/THL, HGBL with MYC, BCL2, and/or BCL6 rearrangements, or double/triple hit lymphoma.

Figure 3. Transcriptome profiling in blastoid HGBL in comparison with B-ALL. (A) Volcano plot of 4678 significantly differentially expressed (DE) genes with upregulated genes in blue and downregulated genes in red. (B) Principal component analysis revealed distinct clusters formed by differentially expressed genes in blastoid HGBL versus B-ALL cases. (C) Top 30 enriched signaling pathways of DE genes. The bar color corresponds to their respective Z-scores by Ingenuity Pathway Analysis (Invitrogen), with orange colors indicating positive scores for predicted activation, blue colors for negative scores with predicted inhibition, and grey colors for no activity pattern available. NO, nitric oxide; ROS, reactive oxygen species. (D) Heatmap of
the top 30 DE genes. Solid arrow - Blastoid HGBL cases with 3-point score of 1; Open arrow - B-ALL cases with 3-point score of 2.
Newly Diagnosed Blastoid B Cell Neoplasm

CD34

- Negative
 - CyclinD1, CCND1
 - Positive
 - MCL, Blastoid Variant
 - Negative
 - IHC-focused scoring
 - BCL6 ≥ 30%
 - MYC ≥ 40% or MYC-R
 - TdT Negativity
 - Yes
 - No
 - Score ≥2
 - Blastoid HGBL
 - FISH for MYC, BCL2, and/or BCL6 Rearrangements
 - Yes
 - D/THL
 - No
 - HGBL-NOS
 - Score<2
 - B-ALL

Correlation with the following additional features is recommended, especially in very difficult cases:

- a. History
- b. Surface light chain expression
- c. B-ALL related recurrent genetic abnormalities (mutation, translocation)
- d. Complex karyotype
- e. Expression of myeloid antigens