"ASXL1"-erating inflammation and bone marrow fibrosis in myeloproliferative neoplasms

by Hélène F.E. Gleitz and Rebekka K. Schneider

Received: August 17, 2022.
Accepted: August 19, 2022.

Citation: Hélène F.E. Gleitz and Rebekka K. Schneider. "ASXL1"-erating inflammation and bone marrow fibrosis in myeloproliferative neoplasms.

Publisher's Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
Title: “ASXL1”-erating inflammation and bone marrow fibrosis in myeloproliferative neoplasms

Authors: Hélène F.E. Gleitz1,2, Rebekka K. Schneider1,2,3,*

1 Department of Developmental Biology, Erasmus Medical Center, Rotterdam, the Netherlands.
2 Oncode Institute, Erasmus Medical Center, Rotterdam, the Netherlands.
3 Department of Cell Biology, Faculty of Medicine, Institute for Biomedical Engineering, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany.
* Corresponding author: Rebekka K. Schneider, reschneider@ukaachen.de

In this issue of Haematologica, Shi et al.1 report on a critical role of ASXL1 mutations in driving bone marrow fibrosis via an EGR1-TNFA axis in both murine models and PMF patients.

Additional sex combs like 1 (ASXL1) mutations are one of the most common molecular biological abnormalities in patients with primary myelofibrosis (PMF), and the effect of these mutations on prognosis remains controversial. Recent reports demonstrated that ASXL1 mutations alone are not detrimental but confer a worse prognosis when associated with a mutation in TP53 or high-risk genes2. In line with these findings, it was demonstrated that ASXL1 mutations are early driver events in primary myelofibrosis (PMF) but might be acquired later in the disease course of secondary myelofibrosis (SMF)3. This raises the question of the effect of ASXL1 mutations on the hematopoietic stem and progenitor cells. Here, Shi et al. sought to shed light on the mechanism of aberrant lineage differentiation and transcription deregulation tied to ASXL1 mutations in MPNs, using patient biopsies and the hematopoietic-specific Vav-Cre-driven Asxl1-/- JAK2VF murine model.

In their article, Shi and colleagues4 once again confirm that ASXL1 mutations, regardless of the “MPN driver” mutation, are associated with a more severe disease phenotype (e.g. larger spleens, higher fibrosis grades, lower hemoglobin) and higher monocyte frequency but do not specifically differentiate between PMF and SMF or additional mutations. The hematopoietic-specific JAK2VF murine model with deletion of Asxl1 represents a model for early acquisition of ASXL1 mutations comparable to ASXL1 being an early event in PMF3. In line with their own and with earlier clinical data, Shi et al. demonstrate that loss of Asxl1 triggers earlier fibrosis onset and a generally more severe phenotype and also induces a differentiation bias towards the monocyte/macrophage lineage. Monocytosis in patients with primary myelofibrosis was previously associated with inferior survival4 and could be explained by a more severe inflammatory state. As ASXL1 mutations were associated with monocytosis in patients and the murine model, the authors explored the hypothesis of monocyte-derived fibrocytes contributing to more severe fibrosis. Fibrocytes are still only very broadly defined as spindle-shaped cells expressing markers of both hematopoietic cells (CD34, CD43, CD45, CD68, LSP-1, and major histocompatibility complex class II) and stromal cells (collagen I, collagen III, and fibronectin) and have been associated with primary myelofibrosis5. Shi et al. show an association of an increased frequency of fibrocytes in patients carrying an ASXL1 mutation when compared to controls but functional evidence of active ECM production of these cells contributing to fibrosis still remains to be demonstrated. Surprisingly, the authors show no significant difference in staining of Gli1- and LepR-positive in their relatively small cohort of patients (n=4 ASXL1MUT vs n=8 ASXL1WT) which were previously reported to expand as fibrosis-driving cells in response to an MPN clone6,7. This might be due to the fact that both are known to be expressed in low levels and difficult to be detected in immunofluorescence without signal amplification. Another critical point is the preparation of tissue, specifically fixation and decalcification, which significantly impacts stainings of the bone marrow. Recent work by van Egeren and colleagues6 just described a population of CD34- bone marrow monocytes using single cell RNA sequencing and found that the JAK2 mutation increased expression of intermediate monocyte genes and the fibrocyte-associated surface protein
SLAMF7 in these cells. It would now be interesting to explore if there is also an association with ASXL1 co-mutations.

Shi et al. sought to dissect transcriptional differences upon co-mutation/loss of Asxl1 in their murine model. Using bulk-RNAseq of the heterogeneous population of ckit+ hematopoietic stem and progenitor cells, the authors show that inflammation-related pathways such as Nfkb, TNFa and IL-17, are upregulated in Asxl1−/− JAK2VF BM ckit+ cells and confirmed higher serum levels of TNF-a in ASXL1 mutant patients and Asxl1−/− JAK2VF mice. Given the strong association they observe between the double mutants/co-mutations, it would have been also of particular interest to see the effect of the co-mutation on e.g. CD14+ monocytes and not only progenitor cells. Interestingly, Shi and colleagues observed and validated the upregulation of Egr1 in LSKs, GMPs and monocytes of Asxl1−/− JAK2VF mice. This is an interesting link to fibrosis as Egr1 expression was described in solid organ fibrosis to be induced by fibrogenic (pro-inflammatory) stimuli and to regulate the expression of extracellular matrix components, matrix remodeling enzymes and fibrogenic cytokines such as TGF-β, leading to myofibroblast differentiation. Shi et al. further leveraged RNAseq, ATACseq and CHIP-seq to investigate the transcriptional and epigenetic alterations in Asxl1−/− JAK2VF double mutants and highlight increased chromatin accessibility associated with increased levels of histone marks on enhancers, also specifically on the Egr1 locus. This is a strong point towards a role of EGR1 in more advanced fibrosis.

Recent pivotal studies have transformed our understanding of mutation acquisition in MPN and the timing of acquisition of an ASXL1 mutation in MPN patients seems to be crucial for the phenotype. This raises the question what role the timing of ASXL1 mutations in MPN has on disease and fibrosis initiation and progression, and if similar pathways and genes are activated. The “ASXL1-erating” effect on fibrosis kinetics in MPN was clearly demonstrated and it will be interesting to see in the future the functional effect of an EGR1/TNFα axis which could potentially act as a therapeutic intervention point.

References