Von Willebrand factor in the plasma and in the tumor tissue predicts cancer-associated thrombosis and mortality

by Ioannis Karampinis, Kai Nowak, Julian Koett, Christian Mess, Laura Wagner, Timo Gaiser, Frank Thomas Mayer, Lukas Goertz, Stefan Werner Schneider, and Alexander Thomas Bauer

Received: April 28, 2022.
Accepted: September 9, 2022.

Publisher's Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
Von Willebrand factor in the plasma and in the tumor tissue predicts cancer-associated thrombosis and mortality
Ioannis Karampinis1*, Kai Nowak2*, Julian Koett3*, Christian Mess3, Laura Wagner4, Timo Gaiser5, Frank Thomas Mayer6, Lukas Goertz7, Stefan Werner Schneider3 and Alexander Thomas Bauer3, 8

Affiliations

1 Division of Thoracic Surgery, Academic Thoracic Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
2 Department of Surgery, RoMed Klinikum Rosenheim, Rosenheim Germany
3 Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
4 Center for Trauma Surgery, Orthopedics and Hand Surgery, Hospital Worms, Worms, Germany
5 Institute of Pathology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
6 Department of Dermatology and Venereology, University Hospital Frankfurt, Frankfurt, Germany
7 Department of Neuroradiology, University Hospital of Cologne, Cologne, Germany
8 Experimental Dermatology, Department of Dermatology, Venereology, and Allergy, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany

* These authors contributed equally to the manuscript.

Footnotes

Ioannis Karampinis, Kai Nowak, and Julian Koett contributed equally to the manuscript.
Author contributions
I.K., K.N. and J.K. performed experiments and generated data. C.M. performed statistical analyses and figure preparation. L.S., T.G., F.T.M., L.G. and S.W.S. discussed and analyzed data. A.T.B. contributed to all experiments and wrote the manuscript.

Running title: VWF and cancer

Key words
Cancer-associated thrombosis, ADAMTS-13, von Willebrand factor

Corresponding author
Alexander T. Bauer
Department of Dermatology and Venereology
University Medical Center Hamburg-Eppendorf
Martinistraße 52, 20246 Hamburg, Germany
Medical Faculty Mannheim, University of Heidelberg,
Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
Tel.: 0049 (0)40 7410-51971
Email: a.bauer@uke.de

Trial registration: 2012-293N-MA, date: June 19, 2012

Funding information
The authors thank Sabine Vidal-y-Si and Natalia Halter for technical assistance. This work was supported by the grant from the Deutsche Forschungsgemeinschaft (German Research Council) RTG2099 “Hallmarks of Skin Cancer” [to J.K., A.T.B., S.W.S and the Erich und Gertrud Roggenbuck-Stiftung [A.T.B.].

Data sharing statement: The authors agree for sharing data.

Disclosures: The authors declare no competing financial interests.
Cancer-associated thrombosis (CAT) is a well-known complication of malignant tumors and is associated with faster tumor progression and worse prognosis (1-3). A promising candidate to serve as thrombogenic marker in tumor progression is von Willebrand factor (VWF). VWF multimers mediate intravascular platelet adhesion and activation and might be therefore responsible not only for thrombotic vessel occlusion, but also for the development of metastases (4, 5). The aim of the study was the assessment of the prognostic value of VWF and ADAMTS-13, an enzyme that cleaves and inactivates VWF multimers, in patients with malignant tumors. To this end, we analyzed VWF and ADAMTS-13 in blood samples and explored the association between venous thromboembolism (VTE), disease progression and tumor-related death. To substantiate an impact of VWF in platelet binding and vessel occlusion, we compared intratumoral VWF distribution and VWF-dependent platelet accumulation with peritumoral regions. There was an evident correlation between increased plasmatic VWF levels and VWF-mediated platelet aggregations in the tumor microenvironment, CAT and cancer-related mortality. The novelty of this study is the correlation of blood-based markers with the occurrence of ultra-large VWF multimers mediating platelet aggregation in tumor and peritumoral tissue. This opens a novel field of investigations for the development of prognostic biomarkers and innovative therapeutic concepts.

This study included 194 patients diagnosed with cancer between January 2013 and September 2018 at the University Medical Center Mannheim. Healthy volunteers and patients with non-metastatic basal cell carcinoma (BCC) were used as control. None of the included BCC patients developed metastases or VTE. All procedures were performed with written informed consent from all participants in accordance with the Declaration of Helsinki. The protocols received approval by the ethics committee. Inclusion criteria were: (i) a confirmed diagnosis of cancer according to the AJCC tumor staging and classification (ii) histologic confirmation of diagnosis and (iii) at least 18 years of age. Adult patients undergoing surgery in curative intent for colorectal, esophagogastric and lung cancer were included. Exclusion criteria were the presence of an autoimmune disease, hepatitis B or C and previous therapeutic anticoagulation.

VWF levels and ADAMTS-13 activity were analyzed in sodium citrate plasma samples as described (4). Local conformation changes of VWF in tumor tissue compared with peritumoral regions, defined by a board-certified pathologist (TG) and
separated from the tumor by at least 5-10 mm, was analyzed by immunofluorescence. Rabbit anti-human VWF (DakoCytomation, RRID:AB_2315602), mouse anti-human thrombospondin (Laboratory Vision, RRID:AB_61137), mouse anti-human CD31 (DakoCytomation, RRID:AB_2114471), FITC-conjugated goat anti-rabbit (BD Pharmingen, RRID:AB_395212) and Alexa 555-conjugated goat anti-mouse (IgG; Invitrogen, RRID:AB_141822) were used. For comparison of two groups the two-sided student’s t-test, and for multiple groups one-way ANOVA (Kruskal-Wallis H test) with the Wilcoxon post-hoc test was used. Correlation coefficients were calculated with Spearman analysis. Survival was analyzed using Kaplan-Meier analysis and compared using log-rank (Mantel-Cox) test. Results of the Cox models are displayed as hazard ratio (HR) and the 95% confident intervals (95% CI). The cut-off values were selected by optimizing the log-rank statistics. *P ≤ .05 was considered as significant difference.

Baseline characteristics of the study population are shown on Table 1. There was no significant correlation between plasma VWF concentrations and age neither in the control (R=0.18; p= 0.13) nor in tumor patients (R=0.13; p= 0.14). Plasmatic VWF levels did not differ between female and male study participants. In the healthy control population, the mean VWF level [ng/ml] was 11519.4 ± 6261.3 and in patients with BCC it was 14730.2 ± 10537.4. Patients with gastric, esophageal, colorectal, and pancreatic cancer had significantly higher VWF values compared with the control group (Figure 1 A). Mean plasmatic VWF levels [ng/ml] were 19551.5 ± 14029.1 for patients with colorectal, 27236.1 ± 14476.8 for patients with gastric cancer, 25555.5 ± 10340.7 for esophageal tumors and 37041.5 ± 14641.2 for patients with pancreatic tumors (Table 1). Among patients diagnosed with colorectal, gastric, esophageal, and pancreatic cancer, a significant reduction of ADAMTS-13 activity was observed (Figure 1 A, Table 1). Consequently, a significantly inverse correlation (Spearman's ρ = -0.41, p ≤ 0.001) between VWF values and ADAMTS-13 activity was reflected by a high VWF / ADAMTS-13 ratio (Figure 1 B). By contrast, blood VWF [ng/ml] was not elevated in patients with lung tumors and a significant increase of ADAMTS-13 activity was detected (Figure 1 A; p ≤ 0.05).

Next, the VWF / ADAMTS-13 was analyzed in tumor patients of all tumor stages. Patients were divided in three groups depending on the stage of the disease - advanced disease (stage III and stage IV), localized disease (stage I and stage II) and neoplastic in situ tumors (stage 0). As shown in Supplemental Figure 1, VWF
levels in stage I and II and stage III and IV patients were significantly elevated. Importantly, the highest levels of the VWF / ADAMTS-13 ratio were measured in patients with in situ lesions (stage 0) and reveal increased systemic VWF levels combined with reduced plasmatic ADAMTS-13 in early disease stages (Supplemental Figure 1).

A telephone-based follow up period of 6 years revealed that 26.6% (41 of 155) of the patients with cancer had developed a thromboembolic complication. In particular, VTE occurred in 15.4% of patients with colorectal cancers, in 16.2% with gastric tumors, in 30.8% with pancreatic tumors, in 37.3% of the patients with esophageal malignancies and in 42.9 % of patients with lung cancer (Table 1). In Cox regression analyses, patients with VTE were at higher risk of death compared with patients without thrombotic complications (Figure 1 C; HR: 2.027; CI lower: 1.2; CI upper: 3.424; p = 0.007). The VWF / ADAMTS-13 ratio was higher in patients diagnosed with VTE when compared to cancer patients without the occurrence of VTE (Figure 1 D). For analysis of overall survival (OS) according to plasmatic VWF levels or ADAMTS-13 activity patients were separated into two groups according to their plasmatic VWF concentrations or ADAMTS-13 activity. Both, elevated VWF levels and reduced ADAMTS-13 activity (Supplemental Figure 2) were clearly associated with shorter OS. Consequently, as determined by the Kaplan-Maier method shown in Figure 1 E the 25th survival percentile of patients with a low VWF / ADAMTS-13 ratio (VWF / ADAMTS-13 < 1.83) was 1656 days compared to 448 days of patients with a high VWF / ADAMTS-13 ratio (VWF / ADAMTS-13 ≥ 1.83). Thus, elevated plasmatic VWF concentrations and reduced ADAMTS-13 activities may serve as prognostic marker for tumor patients (HR: 2.712; CI lower: 1.459; CI upper: 5.04 p = 0.001). Finally, we evaluated whether elevated plasma VWF was related to intratumoral VWF networks mediating platelet aggregation (Figure 2; Supplemental Figure 3). Histological analyses demonstrated that VWF is mainly restricted to endothelial cells within the blood vessel wall in non-activated endothelial cells (Figure 2 A). Blood vessels with endothelial cell activation and subsequent VWF secretion were identified by intraluminal VWF fibers (≥ 5µm) mediating platelet binding and aggregation (Figure 2 B-D). As displayed in Figure 2 E we calculated the relative increase of intratumoral vessels with VWF fibers in relation to blood vessels within peritumoral tissue. We detected that tumor entities with a low microenvironmental VWF network formation, such as colorectal (13.5%) or lung (10.4%) cancer, were associated with
relatively low plasmatic VWF / ADAMTS-13 values (Figure 1). A gradual increase in luminal VWF network formation occurring in esophageal (18.4%), gastric (25.3%), and pancreatic cancer (26.4%) was statistically significant and was increased in patients with VTE (Figure 2 F). Importantly, increased levels of VWF fibers in the tumor tissue were associated with a reduced OS (Figure 2 G).

The first aim of the current study was to evaluate if systemic VWF levels and ADAMTS-13 activity could serve as prognostic biomarkers in malignancy. A significant increase of both the plasmatic VWF and the VWF / ADAMTS-13 ratio was observed in tumor patients, in contrast to healthy control or BCC. Data obtained from tumor patients are in line with our observations showing that elevated serum concentrations of VWF are associated with decreased ADAMTS-13 activities resulting in a high VWF / ADAMTS-13 ratio (6-8). Interestingly enough, we detected no change in the systemic VWF concentration and VWF / ADAMTS-13 ratio in subjects with lung cancer compared to control. While this observation is in agreement with a previous study in patients with non-small cell lung cancer (9), other studies report elevated VWF levels (10), an increased VWF / ADAMTS-13 ratio, and reduced ADAMTS-13 activities (11). It remains to be explored whether VWF and its degradation by ADAMTS-13 contributes to lung cancer progression.

Next, we analyzed changes in the VWF / ADAMTS-13 ratio to examine the association between VWF and tumor progression. In our study, the VWF / ADAMTS-13 ratio was not directly correlated with the disease stages. Interestingly, patients with precancerous lesions, demonstrated even higher values compared to patients with metastatic disease. Imbalances of VWF and ADAMTS-13 have been associated with the development of hepatocellular carcinoma in cirrhotic patients (12) and could thus imply the use as non-invasive biomarker for early detection of malignancy.

To analyze whether there is an association between a high VWF / ADAMTS-13 ratio and thrombotic complications, we performed a follow-up of 6 years after the initial blood sampling. Consistent with previous examinations indicating that coagulation is a prognostic parameter for cancer-related mortality (13-15), our data show that a high VWF / ADAMTS-13 ratio is associated with VTE and a worse prognosis of patients. The procoagulant VWF is a key candidate for cancer-related VTE and metastasis, because in the blood stream stretched VWF multimers mediate platelet binding and aggregation (4, 5). We found a higher amount of VWF multimers in tumor samples promoting platelet binding and thrombotic vessel occlusions. In summary, our data
support the concept that VWF multimers represent the pathophysiological link between the thrombotic risk and tumor progression. Thus, plasma VWF and the ADAMTS-13 activity in combination with histological VWF changes in the tumor microenvironment could help to predict tumor progression and CAT.

This is the first prospective study on the prognostic significance of VWF in cancer patients. Because it was shown that the AB0 blood group and the anti-tumor therapy are predictive for the development of VTE (3, 16), the correlation with VWF should be assessed in larger scale studies in order to establish the link between cancer and thrombosis.

References

Table 1: Demographic, clinical and laboratory characteristics of the study population, plasma levels of VWF and ADAMTS-13 activity. Abbreviations: ADAMTS-13: a disintegrinlike and metalloproteinase with thrombospondin type I repeats 13; SD: standard deviation; VWF: von Willebrand Factor; m: male; f: female; VTE: venous thromboembolism.
Figure legends

Figure 1: Plasmatic VWF levels and ADAMTS-13 activity correlate with the occurrence of VTE and a reduced overall survival in tumor patients. (A) Comparison of tumor patients with healthy controls and BCC according to relative plasmatic VWF levels and ADAMTS-13 activity and (B) the VWF / ADAMTS-13 ratio. Data are presented as box blots showing the median; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001. (C) Kaplan-Meier analysis for overall survival (OS; years) of 155 tumor patients according to the occurrence of venous thromboembolism (VTE; with VTE: 41, w/o VTE: 114). (D) Comparison of plasmatic VWF / ADAMTS-13 ratio of tumor patients according to the occurrence of VTE. Data are presented as box blots showing the median of 155 tumor patients; *p ≤ 0.05. (E) Kaplan-Meier analysis for overall survival (OS; years) of 155 tumor patients according to elevated and non-elevated plasmatic VWF / ADAMTS-13 ratio (cutoff level, 1.83).

Figure 2: VWF fibers in the tumor tissue promote platelet aggregation and correlate with the occurrence of venous thrombosis and a reduced overall survival. Consecutive cryosections (10 µm) of primary colorectal tumors and peritumoral regions were stained for VWF (green), CD 31 (red) or thrombospondin (TSP; red) and DAPI (blue). (A) Representative images demonstrate that VWF is located in the vessel wall of quiescent endothelium. (B) Representative images demonstrate that the secretion of VWF from activated endothelial cells correlates with luminal VWF fibers. (C) Luminal VWF fibers promote platelet binding and (D) platelet aggregation (scale bar: 50 µm). (E) The relative percentage of vessels with luminal VWF fibers (defined as fibers with a length of ≥ 5 µm) in peritumoral tissue was plotted against VWF fiber-containing blood vessels within the primary tumor. (F) Comparison of the relative percentage of vessels with luminal VWF fibers (peritumoral – tumoral) in patients with and without the occurrence of venous thromboembolism (VTE). Data are presented as box blots showing the median; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001. (G) Kaplan-Meier analysis for overall survival (OS; years) of tumor patients according to the relative VWF fiber formation [%] in the tumor tissue (cutoff level, 19.63).
Supplemental Figure 1: The VWF/ADAMTS-13 ratio is elevated in all tumor stages. Comparison of the plasmatic VWF / ADAMTS-13 ratio of tumor patients (without lung cancer) with healthy control and semi-malignant BCC (Control) according the tumor stages (0: tumor in situ; I-II: primary tumor only; III-IV: lymph node and/or organ metastases) according to the criteria of the AJCC. Data are presented as box blots showing the median.
Supplemental Figure 2: Impact of the plasmatic VWF (ng/ml) and the ADAMTS-13 activity (%) on survival of tumor patients. (A) Kaplan-Meier analysis for overall survival (OS; years) of tumor patients according to elevated and non-elevated plasmatic VWF (cutoff level, 13996 ng/ml). (B) Kaplan-Meier analysis for overall survival (OS; years) of tumor patients according to elevated and non-elevated plasmatic ADAMTS-13 activity (cutoff level, 62.6%).
Supplemental Figure 3: Von Willebrand factor fibers (VWF) lead to platelet aggregation in tumor tissue. Consecutive cryosections (10 µm) of primary tumor and peritumoral regions were stained for VWF (green), CD 31 (red) as endothelial cell (EC) marker or thrombospondin (TSP; red) as platelet marker and DAPI (blue) as cell nuclear marker. (A) Representative images present peritumoral stomach tissue with VWF stored in ECs of the vessel wall. (B) In tumor tissue, VWF fibers are visible in the vessel lumen. (C) Platelets bind to the strongly adherent VWF fibers, followed by platelet aggregation. (D) Representative images present peritumoral esophageal tissue with VWF stored in ECs of the vessel wall. (E) In tumor tissue, VWF fibers are visible in the vessel lumen. (F) Platelets bind to the strongly adherent VWF fibers, followed by platelet aggregation and vessel occlusion. (G) Representative images present peritumoral pancreatic tissue with VWF stored in ECs of the vessel wall. (H) In tumor tissue, VWF fibers are visible in the vessel lumen. (I) Platelets bind to the strongly adherent VWF fibers, followed by platelet aggregation. (J) Representative images present peritumoral lung tissue with VWF stored in ECs of the vessel wall. (K) In tumor tissue, VWF fibers are visible in the vessel lumen. (L) Platelets bind to the strongly adherent VWF fibers, followed by platelet aggregation. Scale bar: 50 µm. (M) Number of vessels in peritumoral (peri) and tumoral (tu) tissue with and without (w/o) ultra-large von Willebrand Factor (ULVWF) fibers stained by immunofluorescence to detect VWF fibers and platelets in the vessel lumen.