Getting (T-cells) ENGaged

by Susanne H.C. Baumeister

Received: June 16, 2022.
Accepted: July 21, 2022.


Publisher’s Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors’ final approval; the final version of the manuscript will then appear in a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
Getting (T-cells) ENGaged

Susanne H.C. Baumeister

Boston Children’s Hospital, Division of Pediatric Hematology-Oncology, Boston, MA, USA
Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
Harvard Medical School, Boston, MA, USA

In this issue of Haematologica, Vaidya and colleagues report on “Improving the anti-AML activity of CD123-specific Engager T cells by MyD88 and CD40 costimulation” (1). This work focuses on Engager T cells (ENG T cells), an interesting adoptive T cell modality, aimed at combining the benefits of bispecific monoclonal antibodies (mAbs) to engage bystander T cells regardless of their T-cell receptor (TCR)-specificity with the longevity and trafficking capabilities of adoptively transferred T cells.

Bispecific mAbs (BsAbs) engaging both a tumor target and an immune effector cell have emerged as important therapeutic tools. This approach works by bridging T cells and target cells with BsAbs and prompts T-cell activation that is no longer major histocompatibility complex restricted and independent of the specificity of the native TCR. BsAbs can be generated in different formats and may include or lack an IgG backbone with a Fc Domain. Configurations that do not include an Fc linker include BiTEs (bispecific T cell engagers), DARTs (dual affinity retargeting) and Diabodies which are differentiated by the type of linker and configuration of how the single chain variable fragment (scFvs) recognizing the tumor target is linked to the scFv binding the T cell (2). Blinatumomab is an example of a BiTE that has shown tremendous clinical efficacy in engaging T-cells to eliminate CD19+ B-lymphoblastic leukemia (3-5). Similarly, BsAb approaches are being developed for targets such as CD20 in CD20+ Non-Hodgkin Lymphoma and CD33 and CD123 (6) in acute myeloid leukemia (AML).

However, while these molecules can redirect resident T-cells to target tumor targets, they have a short half-life (Blinatumomab is being administered by continuous infusion) and do not self-amplify or promote ongoing T cell engagement. In contrast, adoptive T-cell immunotherapies using antigen-specific T cells such as chimeric antigen-receptor (CAR) T cells mediate cytotoxic effects against tumor cells in target-specific fashion, can persist and mediate tumor control for years. However, although epitope-spreading has been described, they do not activate bystander T cells to mediate antigen-specific tumor-killing in the tumor microenvironment.

ENG T cells are a T-cell platform that secretes bispecific engagers, after having been transduced with a vector encoding for a BsAb consisting of two single chain variable fragments (scFvs), one specific for the tumor target and the other specific for CD3ε (Figure 1A, C). The production and delivery of BsAbs by ENG T cells in vivo conceptually allows the continuous local delivery of BsAbs at the tumor site without the need for a continuous infusion. The secreted BsAb engage both untransduced T cells in the microenvironment and the ENG T cells themselves and facilitate antigen-specific tumor killing. Additionally, ENG-T cells can be engineered to provide
co-delivery of costimulatory molecules or cytokines to improve ENG T cell function and overcome immunosuppressive factors in the tumor microenvironment.

Several groups have reported preclinical activity with this approach utilizing different bispecific engagers in models of both hematologic malignancies and solid tumors (7-9). In the current study, the authors focus on CD123-specific ENG T cells, which are genetically modified T cells secreting a bispecific antibody (CD123-ENG) consisting of two scFvs binding CD123 and CD3ε respectively to target AML. Previous studies documented the secretion of the bispecific engager protein (CD123 ENG) by CD123 ENG T-cells and binding of the CD123 ENG protein to both CD123-ENG T cells and nontransduced bystander T cells. CD123 ENG T-cells were able to kill CD123-positive primary AML blasts in an antigen-specific manner, and redirected bystander T cells to induce antigen-specific AML target killing in transwell assays whilst demonstrating activity in AML xenograft models (7). However, a decrease in effector function of ENG T cells upon chronic antigen-stimulation remains a limitation of this and other T-cell based therapies.

To overcome this, Vaidya et al. explore the inclusion of a drug-inducible composite MyD88/CD40 activation receptor to provide costimulation, confer improved expansion capability and antitumor activity, via downstream signaling pathways involving NF-κB and PI3K/AKT. The inducible MyD88/CD40 switch comprising a Myristoylation-targeting sequence (to increase protein-protein interactions leading to subcellular localization of myristoylated proteins with its signaling partners), MyD88 (lacking its TIR sequence), the CD40 cytoplasmic domain and two tandem FKBP12v36 chemical inducer of dimerization (CID)-binding domains, which dimerize and activate the receptor upon administration of a dimerizing drug (CID), has previously been described in the context of enhancing the function of dendritic cells (10) and CART cells (11, 12) (Figure 1B).

Here the authors report the effect of using an inducible costimulation system in CD123.ENG T cells (Figure 1C) and compare the effects of the inducible MyD88/CD40 molecule (iMC) with inducible MyD88 and inducible CD40 alone. They demonstrate that upon activation of an iMyD88/CD40 switch by a dimerizing CID drug, CD123 ENG T cells maintained their antigen specificity, exhibited superior effector function under conditions of repeat stimulation and mediated enhanced anti-tumor activity in different AML xenograft models. Although the effect of iMC on bystander T cell activation was not specifically evaluated, these data support further development of this promising Engager T cell platform.
REFERENCES:

LEGENDS:

A) Transgene encoding for the CD20 transduction marker, CD123ENG BsAb and MyD88/CD40 (iMC) inducible switch

B) CID activation of the inducible MyD88/CD40 costimulatory switch, containing a myristoylation-targeting sequence, MyD88 (lacking its TIR domain), the cytoplasmic CD40 domain and FKB12v36 CID-binding domains in tandem, leads to dimerization and activation of the iMyD88/CD40 switch activating downstream NF-κB-transcriptional activity.

C) Model of CD123 ENG T cell action: Transduced ENG T cells express the CD123 ENG bispecific diabody which binds to CD123 ENG T cells and bystander T-cells directing them to antigen-bearing AML cells. Upon antigen binding CD123 ENG and bystander T cells are activated and mediate anti-tumor activity. CD123 ENG T cells increase CD123 ENG diabody mRNA production. However, without activation or inclusion of a MyD88/CD40 switch, CD123 ENG T cell function may decrease upon chronic antigen stimulation.

D) To overcome a decrease in effector function upon chronic antigen stimulation, CD123 ENG T cells can be engineered to express the MyD88/CD40 molecule which can be activated by administration of CID as shown in B. Inducible activation of the MyD88/CD40 switch results in superior CD123 ENG T cell antitumor activity in the tumor microenvironment via downstream T-cell signaling pathways including NF-κB and PI3K/AKT.
Eventual decrease in CD123 ENG T cell effector function upon chronic antigen stimulation without activation or inclusion of a MyD88/CD40 switch.

Inducible enhancement of CD123 ENG T cell antitumor activity in the tumor microenvironment via activation of the MyD88/CD40 switch and downstream signaling pathways including NF-κB and PI3K/AKT.