Reduced platelet glycoprotein Ibα shedding accelerates thrombopoiesis and COX-1 recovery: implications for aspirin dosing regimen

by Paola Simeone, Rossella Liani, Romina Tripaldi, Sonia Ciotti, Antonio Recchiuti, Vittorio Abbonante, Benedetta Porro, Piero Del Boccio, Augusto di Castelnuovo, Paola Lanuti, Marina Camera, Damiana Pieragostino, Melissa Lee-Sundlov, Myriam Luongo, Raffaella Auciello, Giuseppina Bologna, Maria Concetta Cufaro, Elena Tremoli, Karin M. Hoffmeister, Francesco Cipollone, Alessandra Balduini, and Francesca Santilli

Received: March 10, 2022.
Accepted: December 5, 2022.

Publisher's Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
Title: Reduced platelet glycoprotein Ibα shedding accelerates thrombopoiesis and COX-1 recovery: implications for aspirin dosing regimen

Short Title: Platelet lifespan imbalance and aspirin response

Paola Simeone,1* Rossella Liani,1* Romina Tripaldi,1 Sonia Ciotti,1 Antonio Recchiuti,2 Vittorio Abbonante,3,4 Benedetta Porro,5 Piero Del Boccio,6 Augusto di Castelnuovo,7 Paola Lanuti,1 Marina Camera,5,8 Damiana Pieragostino,9 Melissa Lee-Sundlov,10 Myriam Luongo,11 Raffaella Auciello,12 Giuseppina Bologna,1 Maria Concetta Cufaro,9 Elena Tremoli,13 Karin M Hoffmeister,10,14 Francesco Cipollone,1 Alessandra Balduini,3 Francesca Santilli,1#.

*Joint first authors

1 Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), University of Chieti, Italy
2 Department of Medical, Oral, and Biotechnological Science, Center for Advanced Studies and Technology (CAST), Chieti, Italy
3 Department of Molecular Medicine, University of Pavia, Pavia, Italy
4 Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy.
5 Centro Cardiologico Monzino IRCCS, Milan
6 Department of Pharmacy, Center for Advanced Studies and Technology (CAST), Chieti, Italy
7 Mediterranea Cardiocentro, Napoli, Italy
8 Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
9 Department of Innovative Technologies in Medicine and Dentistry, Center for Advanced Studies and Technology (CAST), Chieti, Italy
10 Versiti Translational Glycomics Center and Versiti Blood Research Institute, Milwaukee, WI, USA
Address for Correspondence: Francesca Santilli MD, PhD, Associate Professor, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University. Address: Luigi Polacchi, 66013 Chieti, Italy. Tel: +39-0871-541322. Fax: +39-0871-541261. E-mail: francesca.santilli@unich.it

Funding: Supported by grants from the Italian Ministry of Health (COD WF GR 2011-02350450 to FS) and PRIN 2017Z5LR5Z to AB

Conflict of interest: Prof Santilli has received research grant support and consulting fees from Bayer, all unrelated to this manuscript. The remaining authors have nothing to disclose.

Author contribution: FS conceived and designed the research studies and obtained funds for the project. PS enrolled patients and acquired data. RL, RT, SC, AR, VA, BP, MLS, ML, RA, GB, PDB, DP, and MCC conducted experiments. AdC, RL, RT, SC and PS analyzed data. FS, PS, RL, AR and AB wrote the manuscript with input from other authors. FS, AB, PL, MC, DP, ET, KMH, PDB and FC revised and provided critical interpretation for important intellectual content. All the authors approved the final version.

Acknowledgements: The authors thank Prof Carlo Patrono for his invaluable suggestions and
for critical reading of the manuscript. We also thank Dr. Laura Creati, Silvio Basile, Mariapia Blasetti, Luciano Giacci, Diego Ferrara, Rosalba Silvestri, Moreno D’Emilio, who provided assistance with patients, and Dr Valeria Creato, Damiano D’Ardes, Andrea Boccatonda, Raffaele Pepe for help in the patients’ recruitment and Dr Pasquale Simeone who contributed to perform flow-cytometry analysis.

Data sharing statement. For original data, please contact francesca.santilli@unich.it

Text word count: 5311
Abstract

Cardiovascular prevention with low-dose aspirin can be less effective in patients with a faster recovery of platelet cyclooxygenase (COX)-1 activity during the 24 hours dosing interval. We previously showed that incomplete suppression of TXA2 over 24 hours can be rescued by a twice daily aspirin regimen.

Here we show that reduced platelet glycoprotein (GP)Ibα shedding characterizes patients with accelerated COX-1 recovery and may contribute to higher thrombopoietin production and higher rates of newly-formed platelets, escaping aspirin inhibition over 24 hours.

Two-hundred aspirin-treated patients with high cardiovascular risk (100 with type 2 diabetes mellitus) were stratified according to the kinetics of platelet COX-1 activity recovery during the 10-24h dosing interval. Whole proteome analysis showed that platelets from patients with accelerated COX-1 recovery were enriched in proteins involved in cell survival, inhibition of apoptosis and cellular protrusion formation. In agreement, we documented increased plasma thrombopoietin, megakaryocyte maturation and proplatelet formation, and conversely increased platelet galactose and reduced caspase 3, phosphatidylserine exposure and ADAM17 activation, translating into diminished GPIbα cleavage and glycocalcin release. Treatment of HepG2 cells with recombinant glycocalcin led to a dose-dependent reduction in liver thrombopoietin mRNA, suggesting that reduced GPIbα ectodomain shedding may unleash thrombopoiesis. A cluster of clinical markers, including younger age, non-alcoholic fatty liver disease, visceral obesity and higher thrombopoietin/glycocalcin ratio, predicted with significant accuracy the likelihood of faster COX-1 recovery and suboptimal aspirin response.

Circulating thrombopoietin/glycocalcin ratio, reflecting a dysregulation of platelet lifespan and production, may provide a simple tool to identify patients amenable to more frequent aspirin daily dosing.
INTRODUCTION

Platelets play key roles in atherothrombosis, by acting as inflammatory mediators, and participating in the processes of forming and extending atherosclerotic plaques, and in thrombus growth and vascular occlusion.\(^1\) Thromboxane (TX)-dependent platelet activation, as reflected by 11-dehydro-TXB\(_2\) urinary excretion, has been associated with several conditions, including cardio-cerebrovascular diseases and cardiovascular risk factors, such as diabetes mellitus.\(^2,3\)

The antiplatelet and cardioprotective properties of low-dose (81 to 100 mg daily) aspirin rely on its capacity to irreversibly inactivate cyclooxygenase (COX)-1 in the anucleate platelets and TXA\(_2\) biosynthesis over 24 hours.\(^3\) Over the last decades, the concept of suboptimal response to aspirin, firstly inadequately referred to as aspirin resistance, has affirmed, based on the evidence of lower-than-expected inhibition of platelet function assays, which however poorly reflect the mechanism of action of aspirin, and display scarce reproducibility over repeated measurements and poor correlation with COX-1 inhibition, as reflected by serum TXB\(_2\) (sTXB\(_2\)).\(^4,6\)

The variable turnover rate of aspirin target, platelet COX-1, is the most convincing determinant of the interindividual variability in aspirin response. Under several pathologic conditions, such as essential thrombocythemia, polycythemia vera, on-pump coronary artery bypass surgery, as well as in patients at high cardiovascular risk, with or without T2DM,\(^7,9,10\) a proportion of platelets with uninhibited COX-1 may determine faster recovery of COX-1 activity and TXA\(_2\) generation and limit the extent and duration of aspirin effect during the 12-24 hour dosing interval\(^7,8\) leading to substantial platelet activation and recovery of platelet function. Because full suppression of TXA\(_2\)-dependent platelet function requires >97% inhibition of COX-1 activity,\(^6\) even a modest recovery of this activity can sustain a substantial platelet activation responsible for the excess cardiovascular (CV) events in aspirin-treated subjects.

Shorter duration of TXA\(_2\) suppression during the 24h dosing interval can be rescued by a twice daily low-dose aspirin regimen\(^7,9,10\), leading to persistently inhibited sTXB\(_2\) over 24
hours. An accelerated platelet turnover has been historically advocated as the underlying mechanism, although no direct evidence has been provided to substantiate enhanced megakaryopoiesis and accelerated destruction in subjects with shorter duration of aspirin effect. Patients’ classification based on the clinical setting, including diabetes or acute coronary syndrome, failed to accurately identify patients escaping low-dose aspirin inhibition and for whom different strategies or aspirin dosing regimens may be required. Understanding the mechanisms driving faster COX-1 recovery in the usual dosing interval may help identifying novel biomarkers of suboptimal drug response.

Thrombopoietin (TPO) is the primary regulator of platelet production from megakaryocytes (Mks) and is produced by the liver under a number of stimuli including inflammation. Conversely, platelet lifespan, glycan degradation and apoptosis mediate platelet clearance. Senescent platelets are cleared upon exposure of galactose to hepatic Ashwell-Morrell receptors (AMR), in turn stimulating TPO production. Glycoprotein Iα (GPIbα) shedding by metalloproteinases such as a disintegrin and metalloprotease (ADAM) 17 is another mechanism of platelet clearance, and plasma glycocalicin (GC), an extra cellular domain of GPIbα, released during platelet clearance, is an index of destruction and platelet turnover. Platelet extracellular GPIbα domain is required for platelet-mediated TPO generation, as underscored in GPIbα−/− mice and patients with Bernard-Soulier syndrome.

By employing an integrated approach including biochemistry, proteomics, flow-cytometry, cell biology, and a mechanism-based endpoint to monitor aspirin pharmacodynamics, we analyzed the platelet proteome, platelet turnover, as reflected by TPO and GC circulating levels, galactose exposure and GPIbα ectodomain shedding, Mk maturation and proplatelet formation in patients at high CV risk with or without type 2 diabetes mellitus (T2DM) stratified according to the kinetics of COX-1 recovery. We show that reduced platelet GPIbα shedding characterizes patients with accelerated COX-1 recovery and may contribute to higher TPO production and higher rates of newly-formed platelets,
escaping aspirin inhibition over 24 hours. The TPO/GC ratio, a relatively simple, mechanism-based biochemical tool, may identify with significant diagnostic accuracy aspirin-poor responders due to accelerated renewal of the drug target.

METHODS

Study design and participants

One-hundred T2DM patients diagnosed according to the European Society of Cardiology (ESC) guidelines, with or without prior vascular disease, on aspirin 100 mg (enteric coated, Cardioaspirin, the antiplatelet dosage and formulation employed in Italy) once daily for at least 1 year and 100 patients without T2DM with comparable characteristics (Online Supplementary Table S1, study participants) were enrolled at the Diabetes and CV Prevention Clinics, Chieti SS. Annunziata Hospital, Italy. Five healthy subjects were enrolled as control. All patients underwent liver ultrasound (see Online Supplementary Methods).

The study was preceded by a 7-day run-in during which patients were instructed to take aspirin at 8 pm. Blood was collected before witnessed aspirin intake (8 am, day 1), and repeated at 10 and 24 hours after the last intake, to assess the kinetics of COX-1 activity recovery, as reflected by the slope of sTXB2 levels throughout the 24 hours dosing interval between two witnessed aspirin administrations (Figure 1A). sTXB2 is indeed a marker of COX-1 activity *ex vivo*. We previously reported that the absolute increase in sTXB2 levels between 12 and 24 hours after dosing predicts ~90% slope variability, as assessed by measuring sTXB2 every 3 hours in the 12- to 24 hours dosing interval. Based on sTXB2 slope (sTXB2 T24 – sTXB2 T10)/14, we stratified patients in tertiles (n~33 each) and carried out a cross-sectional comparison of platelet-related study variables between first (good aspirin responders) and third tertile (poor responders) within patients with and without T2DM.
Platelet isolation

Platelet rich plasma (PRP) was separated (100 xg, 15 min) from ACD-A anticoagulated blood, mixed with prostaglandin E1 (PGE1, 4uM) and EDTA (10mM), and filtered on Pall Purecell PL (Pall Medical, New York, USA) to remove leukocyte contaminant. Filtered PRP was analyzed with flow cytometer to exclude red blood cells (CD235+) contamination and platelet activation (CD62P+). Platelets were lysed with DIGE buffer for Western Blot (WB) and proteomics analysis.

Statistics

We estimated that at least 30 patients would be required in each group to detect a mean difference in any of the investigated parameter \geq1 standard deviation between the first and the third sTXB2 slope tertiles with alpha=0.01 and power=90%.

All the statistical analyses have been carried out separately in individuals with and without T2DM.

Univariable comparisons between groups were performed by χ^2 tests or Mann-Whitney U or Spearman rank correlation test.

Multivariable logistic regression models were constructed to identify factors associated with the likelihood of being in the third vs. first tertile for sTXB2 recovery slope. A parsimonious backward-stepwise elimination of variables with p<0.20 was deemed as appropriate in our setting. ROC curves were constructed for the predicted probabilities derived from the logistic regression models.

The data analysis was generated using SAS software.

Study approval. The protocol was approved by the institutional Ethics Committee (Prot 1129/2015, GR-2011-02350450). Participants provided written informed consent, and were identified by number, not by name.

See Online Supplementary Methods (pages 2-8) for more details on study participants and extended description of experimental procedures.
RESULTS

Clinical characteristics

Clinical characteristics of patients are in Online Supplementary Table S1 and detailed in Online Supplementary Results. Patients’ characteristics according to sTXB2 recovery slope tertiles are reported in Table 1 and detailed in Online Supplementary Table S2 and Results.

A fraction of patients shows faster recovery of COX-1 activity over the 10–24 hours aspirin dosing interval, higher COX-1 mRNA expression and thromboxane-dependent platelet activation

In the first tertile of recovery slope, sTXB2 was steadily suppressed over the 10–24 hours dosing interval (Figure 1, B and C), as observed in healthy subjects,6 while patients in the third tertile (slope>=0.17 ngmL⁻¹h⁻¹ and slope>=0.18 ngmL⁻¹h⁻¹ in patients with and without diabetes, respectively) showed a significantly faster recovery of COX-1 activity, as reflected by the sTXB2 increase between 10 and 24 h post-aspirin (Figure 1, B and C).

This indicates that at least a fraction of aspirin-treated patients at risk for CV events has an accelerated recovery of the drug target, and that the “poor aspirin responder” phenotype is not specific for diabetes. In addition, the TXB2 recovery slope was not related to duration of aspirin treatment (Online Supplementary Table S2).

Platelet COX-1 mRNA was significantly higher in third vs. first tertile (p=0.014, Figure 1D), indicating a faster renewal of the drug target in the patients with suboptimal response to aspirin. To assess whether an accelerated recovery of sTXB2 ex vivo translated into enhanced in vivo TX-dependent platelet activation, we measured urinary 11-dehydro-TXB2 levels, that were higher in patients of third vs. first tertile in the whole group (p=0.022, Figure 1E) and in T2DM (p=0.049, data not shown).

Platelet proteome indicates increased cell survival and inhibition of apoptosis in patients with faster COX-1 activity recovery

We characterized the functional proteomic profile of platelets from third vs. first tertile
within patients with or without T2DM, using pooled samples as described in method section. The quantified proteins are reported in Online Supplementary Table S4 and S5. In order to ensure the quality of our proteomics dataset we compared it to the reference platelet proteomic repository, obtaining more than 95% of correlation (data not shown). Volcano Plots show proteins differentially identified between first vs. third in patients without and with T2DM (Online Supplementary Figure S3, S3A and S3B).

The protein ratio was used for “Core Analysis” through the Ingenuity Pathway Analysis (IPA software). We found a significant increase in the pathways “cell survival” (z-score=1.54 for noT2DM, z-score=2.01 for T2DM) “formation of cellular protrusions” (z-score=2.43 for noT2DM, z-score=1.92 for T2DM), and “production of reactive oxygen species” (z-score=2.06 for noT2DM, z-score=2.37 for T2DM), and a simultaneous inhibition of “apoptosis” (z-score=-0.58 for noT2DM, z-score=-1.86 for T2DM) in both clinical conditions in platelets from third tertile subjects in comparison to those from first tertile (Figure 2, A and B). We validated the proteomic data by WB analysis and confirmed a significant up-regulation of the endoplasmic reticulum stress marker 78 kDa glucose-regulated protein (GRP78, p=0.042; Figure 2C) and COX-1 (p=0.051; Figure 2D). Patients of third tertile showed consistently higher levels of GRP78 (p=0.042, p=0.017; Figure 2C) and COX-1 (p=0.051, p=0.004; Figure 2D) compared to first tertile patients and healthy subjects.

To further explore a potential hypothesis about the formation of protrusions in platelets, we used Molecule Activity Predictor (MAP) function of IPA by selecting “formation of proplatelets” as downstream of interest. Our proteomic dataset was able to simulate directional consequences on this function by inferring its activation in platelets from third tertile subjects in both clinical conditions analyzed as shown by subnetworks in Figure 2E, with a significant up-regulation of Rab27B, a protein actively involved in platelet biogenesis and proplatelet formation, in platelets of third vs. first tertile (p=0.038; Figure 2F) and vs. healthy subjects (p<0.001; Figure 2F).
Enhanced Mk maturation and proplatelet formation in patients with faster COX-1 activity recovery

Based on the proteomic findings, we investigated whether the different recovery of COX-1 activity reflected differences in megakaryopoiesis and proplatelet production by differentiating Mks in vitro from the haematopoietic progenitors derived from 18 peripheral blood samples of patients with and without T2DM belonging to first and third sTXB$_2$ tertile and from 4 healthy subjects (Figure 3, A and B). Patients’ groups analyzed were comparable for clinical characteristics (Online Supplementary Table S6).

Mks differentiated from the third tertile patients appeared more mature with a significantly higher staining of CD41 and CD42b (GPIbα) Mk19 compared to the first tertile and healthy subjects (Figure 3, C and D), while the percentages of CD41+ and GPIbα+ Mks on the total cultured cells were comparable (Figure 3, C and D). Mks from the third tertile patients extended more proplatelets compared to the first tertile or healthy subjects (Figure 3E). These data demonstrated that terminal Mk maturation and proplatelet formation were increased in patients presenting a faster recovery of platelet COX-1 activity.

Faster COX-1 activity recovery is associated with increased platelet production and decreased destruction

We next evaluated the balance between platelet production and destruction by measuring TPO, GC and GC index (GCI), an index normalizing GC for platelet count [GC concentration (µg/mL) x 250x109 platelet/L/individual platelet count x109/L], 24 hours after witnessed aspirin intake. Consistent with the proteomic findings, plasma TPO levels were higher (p=0.004, Figure 4A and p=0.023, Online Supplementary Figure 4SA), while plasma GC (p<0.001 both; Figure 4B and Online Supplementary Figure 4SB) and GCI (p<0.001 both; Figure 4C and Online Supplementary Figure 4SC) were lower in patients of third vs. first tertile, in the whole group and in subjects with T2DM, with an inverse correlation between TPO, GC (rho=-0.216, p=0.013, data not shown) and GCI (whole group: rho=-0.245,
p=0.006; T2DM: rho=-0.358, p=0.004; Figure 4D and Online Supplementary Figure 4SD). Similarly, among patients without T2DM, GC (p<0.001; Online Supplementary Figure 4SB) and GCI (p<0.001; Online Supplementary Figure 4SC) were significantly reduced in the third vs. first sTXB2 tertile, with a nonsignificant trend for increased TPO (Online Supplementary Figure 4SA). Levels of TPO were lower (p=0.001, p<0.001, p=0.009; Figure 4A) and levels of GC were higher (p<0.001, p<0.001, p=0.005; Figure 4B and Online Supplementary Figure 4SB) in healthy subjects vs. third tertile, in the whole group and in subjects without and with T2DM.

Consistently, platelet count was higher in the third vs. first tertile in all patients (p=0.024, Figure 4E), and in T2DM patients (p=0.047, Online Supplementary Figure 4SE). In the whole group, the TXB2 recovery slope correlated directly with TPO (rho=0.252, p=0.003), and inversely with GC (rho=-0.432, p<0.001) and GCI (rho=-0.495, p<0.001) (data not shown).

Together, these results indicated that patients in the third TXB2 slope tertile presented increased platelet production and reduced destruction.

Lower levels of circulating GC depend on reduced activation of ADAM17 and GPIbα ectodomain shedding in patients with faster COX-1 activity recovery

To determine the mechanisms underlying lower GC in the third sTXB2 slope tertile patients, we measured GPIbα N-terminal fragment and ADAM17 expression in platelets. In all patients, we observed enhanced levels of GPIbα (p=0.016 and p<0.001; Figure 5, A) and lower levels of ADAM17 (p=0.015 and p=ns, Figure 5, B) in third vs. first tertile and vs. healthy subjects, respectively, which may explain the lower levels of circulating GC in the third slope tertile (Figure 4B and Online Supplementary Figure 4SB).

To further understand the mechanisms underlying reduced GPIbα shedding, we analyzed the percentage of annexin V+ platelets exposing phosphatidylserine (PS), since PS exposure is a signal for clearance of apoptotic platelets and is required for ADAM17 activation. The percentage of annexin V+ platelets was significantly lower in the third vs. first
tertile in all patients (p=0.007, Figure 5C) and in patients with T2DM (p<0.001, data not shown) with a nonsignificant trend for patients without T2DM (data not shown).

In healthy volunteers, aspirin administration was associated with PS exposure increase (p=0.002, Figure 5D), and activation of ADAM1723 after 10 and 24 hours (Figure 5E). Thus, reduced PS exposure and ADAM17 activation, translating into diminished GPIb\textsubscript{a} cleavage and GC release, characterizes patients with accelerated recovery of platelet COX-1, and may be related to lower aspirin effect.

Soluble GC inhibits TPO expression

We next hypothesized a role for the GPIb\textsubscript{a} ectodomain in the regulation of TPO expression, since its uncleaved form on the surface of platelets is a trigger of TPO synthesis in hepatocytes.15 We asked whether the fragment of GC *per se* was able to modulate TPO expression.

Treatment of HepG2 cells with an increasing concentration of human recombinant GC was associated, after 1 hour of incubation, with a significant dose-dependent reduction in TPO mRNA (Figure 5F). Thus, lower GC levels, as observed in the third TXB\textsubscript{2} slope tertile, may explain the higher liver expression and circulating levels of TPO.

Higher platelet galactose exposure in patients with faster COX-1 activity recovery

Since TPO production is regulated by the binding of galactose exposed on aged platelets to the AMR in hepatocytes, we analyzed galactose-recognizing lectins, RCA-I and ECL, to assess platelet expression of the terminal β4-N-acetyllactosamine (LacNAc).24 Platelets of the third tertile were characterized by higher ECL (p=0.034, p=0.064) and RCA-I levels (p=0.002, p=0.004) *vs.* first tertile and healthy subjects (Figure 6, A and B), indicating an increase of platelet galactose exposure in aspirin poor responders.

More pronounced platelet galactose exposure in the third *vs.* first tertile was accompanied by higher expression of neuraminidase (Neu)1 (p=0.061, Figure 6C), the sialidase that removes
sialic acid from GPIbα. These data suggested that platelets from patients with accelerated COX-1 recovery are characterized by a higher degree of terminal galactose.

Determinants of the accelerated recovery of COX-1 and predictive value of the TPO/GC ratio

Finally, we carried out a multivariable analysis to identify clinical and biochemical determinants of accelerated recovery of COX-1.

In T2DM patients, starting from a panel of potential determinants including age, gender, BMI=body mass index (BMI), HbA1c, Nonalcoholic Fatty Liver Disease (NAFLD), established atherosclerotic cardiovascular disease (ASCVD), glomerular filtration rate, platelet count, mean platelet volume (MPV), PDW and tertiles of TPO/GC ratio, stepwise multivariable logistic regression analysis identified younger age, presence of NAFLD, higher platelet count and higher TPO/GC ratio as independent predictors of the likelihood of being in the third sTXB2 slope tertile (Figure 7A).

In patients without T2DM, starting from a panel of potential determinants including age, gender, BMI, WHR, platelet count, MPV, PDW, hemoglobin, statin treatment, and tertiles of TPO/GC ratio, stepwise multivariable logistic regression analysis identified higher WHR, lower MPV and higher TPO/GC ratio as independent predictors of the likelihood of being in the third sTXB2 slope tertile (Figure 7A).

Analysis of the ROC curves revealed an outstanding diagnostic accuracy (AUC≥0.88) for the two models in the prediction of the third tertile status vs. first tertile (Figure 7B).

To translate into a clinically useful tool our mechanistic findings of increased platelet production and reduced clearance characterizing accelerated COX-1 recovery, we challenged the predictive value of TPO/GC ratio. Multivariable logistic regression analysis revealed that among subjects with T2DM, those in the third tertile of the TPO/GC ratio (threshold=138 pg/ug) were 33 times more likely (Figure 7A) to be in the third tertile for sTXB2 slope, while those with TPO/GC between 60 and 137 were 11 times more likely (Figure 7A) to be in the third tertile. The addition of tertiles of TPO/GC ratio to the model including only clinical or
hemocromocytometric variables yielded a significant increase in AUC (from 0.754 to 0.883; P for difference 0.015).

Among patients without T2DM, those with TPO/GC above 147 were 10 times more likely (Figure 7A) to be in the third tertile, while those with TPO/GC between 76 and 146 were 9 times more likely (Figure 7A) to be in the third tertile.

Thus, a clinical and biochemical signature may unravel patients with shorter duration of sTXA₂ inhibition for whom more frequent dosing regimens may prevent the steep recovery of platelet COX-1 activity.

See Online Supplementary Results (pages 9-10) for more details on clinical characteristics and study findings.
DISCUSSION

In this work we demonstrate that the shorter duration of TXB₂ suppression by aspirin over the 10 to 24-hour dosing interval, in a fraction of high-risk patients on chronic aspirin treatment, may be explained by 1. accelerated recovery of COX-1 through increased functionally active COX-1 and COX-1 mRNA, higher TX-dependent platelet activation, enhanced TPO production, megakaryocyte maturation and proplatelet formation, leading to increased platelet number; 2. reduced platelet PS exposure, GPIbα ectodomain shedding and higher galactose exposure, fostering thrombopoiesis through liver TPO synthesis; 3. a clinical and molecular signature, including younger age, NAFLD, visceral obesity and high TPO/GCI, identifying with high accuracy aspirin-poor responders.

Over the last decades, the concept of suboptimal response to aspirin has affirmed, but the prevalence of this phenomenon is unclear, due to the heterogeneity of methods used to quantitate the antiplatelet effect of aspirin in these studies, which poorly reflect the biochemical pathway affected by aspirin, i.e. platelet COX-1 activity⁶ and variably reflect the aspirin-sensitive TX-dependent component of platelet aggregation.¹ Even when using sTXB₂, a mechanism-based endpoint with the highest specificity and sensitivity to monitor aspirin pharmacodynamics, we and others have previously characterized an interindividual variability in platelet COX-1 recovery during the 12–24 h dosing interval in patients at high CV risk, or undergoing coronary artery by-pass surgery or with essential thrombocythemia.⁷,⁹,¹⁰ This phenomenon was reverted by shortening the dosing interval, suggesting an accelerated COX-1 renewal within the dosing interval. While previous evidence was largely indirect and based on increased MPV or higher levels of reticulated platelets,¹⁰,²⁶ here we demonstrated increased circulating TPO, enhanced in vitro Mk maturation and proplatelet formation in patients with accelerated kinetics of platelet COX-1. Our data substantiate the hypothesis that, during the 24h dosing interval, newly generated platelets entering the circulation, after aspirin effect waning, bear COX-1 unacetylated and synthesize new TXA₂.
Accelerated MK maturation and proplatelet formation may be driven, at least in part, by higher TPO circulating concentrations. We hypothesize that the higher TPO \textit{in vivo} biases the commitment of haematopoietic progenitors toward the Mk lineages that we observe \textit{in vitro} cultures.27

We next sought to analyze circulating TPO and GC, markers of platelet production and destruction, respectively. We unraveled that reduced platelet destruction, as reflected by lower circulating GC, lower levels of caspase 28 (Online Supplementary Figure S5) and platelet PS exposure, identify platelets from patients with shorter durability of aspirin response. Indeed, proteomics profiling indicated activation of cell survival and inhibition of apoptosis pathways in third sTXB\textsubscript{2} tertile patients, which may characterize younger platelets.29

The observation that platelets from patients with accelerated recovery of COX-1 are less prone to apoptosis was corroborated by lower caspase 3, lower annexin V staining, reduced ADAM17 activation, increased expression of uncleaved GPIb\textalpha, mirroring reduced destruction30–33 leading to lower circulating GC and GCI and higher platelet count. Even if PS alone is regarded as a common marker for both procoagulant or apoptotic platelets, our results on caspase 3, along with proteomics analysis, corroborate our conclusion that third slope tertile patients have less apoptotic platelets.34 Of interest, PS exposure is required for ADAM17-mediated cleavage of GPIb\textalpha20 whose constitutive proteolysis is considered as a signature event of platelet aging. Indeed, treatment with artificial agents mimicking platelet aging induces GC release30,31 and accelerated removal of transfused platelets occurs following GPIb\textalpha proteolysis from stored platelets.32,33 Inhibition of GPIb\textalpha shedding by kinase inhibitors33 or antibodies32 can mitigate platelet clearance and prolong the lifespan of transfused platelets in mice.

Our present results do not allow to make final conclusions regarding platelet lifespan. Although circulating GC has been consistently regarded as an index of platelet destruction, and several lines of evidence converge to support inhibited apoptosis, no direct demonstration of reduced platelet clearance in the third COX-1 recovery tertile has been provided in our cohort. The
reduced percentage of PS-exposing platelets and reduced apoptosis may alternatively be regarded as a feature of young, newly released platelets, or may be the result of earlier platelet clearance over the 24-hour time interval. However, MPV was not higher in third tertile of either group, despite the higher prevalence of larger, newly formed platelets, and lower, rather than higher, MPV was a significant predictor of belonging to the upper sTXB\textsubscript{2} slope tertile among non-diabetic patients, raising the hypothesis of longer platelet lifespan in aspirin poor responders, with coexistence of larger and smaller size platelets.

Whether increased platelet survival/reduced apoptosis is a feature of the “poor-responder” platelets or a consequence of poor aspirin response, is not unraveled. Aspirin induces platelet apoptosis35 and shedding of GPI\textsubscript{b\alpha} and GPV through activation of ADAM17.23 Consistently, in a small number of our healthy volunteers, aspirin treatment was associated with enhanced annexin V+ platelets and increased expression of active ADAM17. Vice versa, patients with accelerated COX-1 recovery displayed lower annexin V+ platelets and lower platelets ADAM17 expression, concomitant with higher expression of platelet GPI\textsubscript{b\alpha} N-terminal domain and lower GC and GCI, vs. normal COX-1 recovery patients, suggesting lack of apoptosis induction by aspirin.

In order to establish a link between the extent of COX-1 acetylation or inhibition and GPI\textsubscript{b\alpha} clustering, on the one hand, and PS exposure, on the other hand, we measured complexes of the adapter protein 14-3-3\textgreek{z} with GPI\textsubscript{b\alpha} and COX-1 in platelets from first and third tertile patients. It was previously shown that arachidonic acid (AA) accumulation due to COX-1 inactivation in cold-stored platelets induce 14-3-3\textgreek{z}-GPI\textsubscript{b\alpha} association, 14-3-3\textgreek{z} release from phospho-Bad, Bad activation, PS exposure, and apoptosis.36 GPI\textsubscript{b\alpha} clustering is also linked to galactose exposure.37 In our setting, 14-3-3\textgreek{z}:GPI\textsubscript{b\alpha} complexes were significantly less in third tertile patients, while 14-3-3\textgreek{z}:COX-1 complexes were significantly higher (Online Supplementary Figure S5). Therefore, it is possible that in first tertile patients, treatment with aspirin, which leads to arachidonic acid accumulation due to inhibition of its
biochemical utilization by platelet COX-1, results in displacement of 14-3-3ξ from the proapoptotic protein Bad in favor of GPIbα and subsequent activation of platelet death. In contrast, in third tertile patients, which have a faster recovery of COX-1 activity, conversion of AA into TXA₂ may determine a lower degree of interaction of 14-3-3ξ with GPIbα and a reduced activation of apoptosis. In keeping with this, we found that apoptosis was inactivated in platelets from third tertile patients.

Increased GPIbα and reduced GC characterize and predict poor aspirin response and may play a role in promoting platelet activation and escape from aspirin. While it is assumed that ADAM17 restrains continuous GPIbα-mediated platelet activation, the phenotype observed in third tertile patients may indicate hyperreactive platelets since GPIbα clustering triggers TXA₂. Along this line, aspirin poor responders with high GPIbα have higher platelet COX-1 and persistent TXA₂ biosynthesis.

The unexpected inverse relationship between platelet destruction and production, as reflected by GC or GCI and TPO, respectively, prompted us to hypothesize that defective GPIbα ectodomain shedding may contribute to sustain enhanced thrombopoiesis in patients with shorter duration of COX-1 inhibition. Indeed, the extracellular domain of GPIbα per se, independently of platelet clearance, is required for liver TPO production. Thus, we challenged the effect of a commercially available recombinant human soluble GC expressed in murine myeloma cells on liver cells in vitro, showing a dose-dependent inhibition in TPO mRNA expression. Together our findings suggest that GPIbα ectodomain shedding by ADAM17 leads to soluble GC binding to hepatocytes, thus reducing liver TPO release. Conversely, low levels of GC shedding in subjects with accelerated COX-1 recovery, may unleash TPO mRNA transcription. We recognize that sugar additions on rGC synthesized in murine myelomas may differ from GC found in circulating human GC, including non-human N-glycolylneuraminic acids, which could affect the binding and recognition of rGC by hepatocytes. Further studies, which will require a careful glycoproteomics approach, are
necessary to understand the role of the protein backbone and sugar additions in the binding of GC to hepatocytes. However, glycoproteomics of rGC and human GC is out of scope of this report.

Platelet galactose exposure also triggers thrombopoiesis through the interaction with AMR. In our study, patients with shorter duration of aspirin response showed increased lectin binding and Neu-1 expression, suggesting a possible further mechanism activating TPO production in these subjects. Thus, both platelet galactose exposure and GPIbα expression may contribute, with a feed-forward mechanism, to accelerated thrombopoiesis escaping aspirin inhibition at the usual dosing interval. More terminal galactose moieties would be expected to lead to increased platelet clearance and decreased circulating platelet count. Other evidence shows that platelets isolated from myeloproliferative (MPNs), often associated with change in circulating platelet count, have a significant increase in terminal galactose expression that correlated with the high allele burden regardless of the underlying identified mutation. Megakaryocytes derived in vitro from these patients showed an increased expression of the B4GALT1 gene encoding β-1,4-galactosyltransferase 1 (β4GalT1) and terminal galactose expression relative to healthy controls. Altered expression of B4GALT1 in mutant megakaryocytes can lead to the production of platelets with aberrant galactosylation, which in turn promote hepatic TPO synthesis regardless of platelet mass. These data suggest a more complex role for B4GALT1 dependent galactose decorations to balance platelet clearance and production. A pathologic increase in galactose could result in both increased platelet production and platelet clearance to perpetuate TPO production.

Finally, we identified a cluster of clinical and biochemical markers predicting the likelihood of suboptimal aspirin response, with particular reference to the TPO/GC ratio, mirroring our mechanistic findings. This may help identifying those patients for whom a more frequent aspirin dosing regimen (bis in die) may be required. The twice daily regimen has already been suggested for the
management of myeloproliferative neoplasms and a phase 2 trial is ongoing to assess the safety of this approach in this setting. Moreover, the ongoing ANDAMAN trial is testing the efficacy and safety of aspirin twice a day in patients with acute coronary syndrome and diabetes, obesity, or aspirin failure (https://clinicaltrials.gov/ct2/show/NCT02520921). However, no clinical setting has been shown to accurately identify those with faster recovery of COX-1 activity. Obesity is known to impair aspirin responsiveness by affecting systemic drug availability, ie absorption and biotransformation, leading to reduced, albeit steady, 24h inhibition of COX-1–dependent TX production. Here we show an additional role of obesity in shortening the effect of aspirin to less than 24 hours. Indeed, in our study, visceral obesity and NAFLD, in patients without and with T2DM, respectively, were independent clinical predictors of shorter duration of aspirin effect, suggesting a role for insulin resistance as the pathophysiological hallmark of both conditions. Indeed, plasma TPO was directly related to waist circumference, hs-CRP, insulinemia, and HOMA-IR.

Diabetes per se is also a recognized setting of platelet hyperreactivity, persistent TX-dependent platelet activation and enhanced platelet turnover, with suboptimal platelet responsiveness. Hyperglycemia is a trigger of IL-6 mediated liver TPO production. Not surprisingly, the predictive power of the TPO/GC ratio is substantially higher in patients with T2DM vs. nondiabetic subjects, regardless of underlying CV risk: indeed, patients in the upper tertile for the TPO/GC ratio, have a 33-fold higher risk to be poor aspirin responders, vs. 11-fold higher risk in subjects without T2DM.

However, the diagnostic accuracy of single clinical features, such as obesity, or diabetes, in discriminating subjects with faster COX-1 recovery is poor and does not allow a personalized, disease-based approach. On the other hand, assessment of aspirin response in the individual patient based on the kinetics of COX-1 recovery is complex and requires repeated measurements. At variance, the TPO/GC ratio identified here is calculated with one blood sampling and provides alone good diagnostic accuracy in detecting subjects with faster
COX-1 recovery and for whom the efficacy and safety of more frequent antiplatelet dosing regimens should be tested.

Limitations of the study include its observational nature, and lack of reticulated platelet data, although previously shown by our group and others and overcome by a direct evaluation of Mk maturation and proplatelet formation. Information about COX-1 acetylation or salicylate measurement is lacking. In addition, we performed lectin blots using galactose binding lectins, showing all proteins with terminal galactose, instead of flow cytometry, that would have revealed most of surface exposed terminal galactose moieties. It is noteworthy that most intracellular proteins are not glycosylated, exception being the Golgi apparatus and O-GlcNAcylated proteins, which seem to be relatively low expressed in platelets (not shown) and platelets contain only few Golgi-like granule.46 Hence, we speculate that most proteins with exposed galactose would reside on the platelet surface. The healthy subject group is very small, although results pre vs. post aspirin administration are quite evident. Strengths are accurate clinical and biochemical characterization and CV risk stratification; ascertainment of compliance to low-dose aspirin; accurate timing of blood sampling; use of a mechanism-based biochemical endpoint to monitor aspirin pharmacodynamics and renewal of the drug target; a combined approach including biochemistry, proteomics, flow-cytometry, cell biology.

Conclusions

In conclusion, an imbalance between platelet production and clearance, with accelerated megakaryopoiesis/platelet production and reduced clearance/prolonged survival, characterizes patients with poor aspirin response, as reflected by the accelerated recovery of platelet COX-1 activity, with or without diabetes (Figure 7C). This imbalance translated into increased platelet count (especially in patients with T2DM) and enhanced TX-dependent platelet activation. Integration of clinical data with TPO to GC ratio may provide a relatively simple tool to identify patients amenable to more frequent aspirin daily dosing, and should be tested in larger, independent cohorts.
REFERENCES

is persistently enhanced in subjects with impaired glucose tolerance. Diab Metab Res Rev. 2020;36(2):e3232.
Table 1: Characteristics of patients with and without type 2 diabetes in relation to tertiles of sTXB₂ recovery slope

<table>
<thead>
<tr>
<th>Variable</th>
<th>T2DM</th>
<th>P value</th>
<th>noT2DM</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age – years</td>
<td>69.0 (66.0-74.5)</td>
<td>0.047</td>
<td>69.0 (62.5-76.5)</td>
<td>0.468</td>
</tr>
<tr>
<td>Male gender, n. (%)</td>
<td>20 (60.6)</td>
<td>0.872</td>
<td>17 (51.5)</td>
<td>0.602</td>
</tr>
<tr>
<td>Smoke, n. (%)</td>
<td>4 (12.1)</td>
<td>0.936</td>
<td>4 (12.1)</td>
<td>0.616</td>
</tr>
<tr>
<td>Weight – Kg</td>
<td>80.0 (70.5-90.0)</td>
<td>0.505</td>
<td>80.0 (70.5-90.0)</td>
<td>0.505</td>
</tr>
<tr>
<td>BMI - Kg/m²</td>
<td>29.3 (25.5-31.5)</td>
<td>0.148</td>
<td>26.3 (25.4-30.0)</td>
<td>0.248</td>
</tr>
<tr>
<td>WC – cm</td>
<td>100.0 (100.0-110.0)</td>
<td>0.120</td>
<td>100.0 (100.0-110.0)</td>
<td>0.026</td>
</tr>
<tr>
<td>WHR</td>
<td>1.0 (0.9-1.0)</td>
<td>0.747</td>
<td>0.9 (0.9-1.0)</td>
<td>0.003</td>
</tr>
<tr>
<td>Obesity, n. (%)</td>
<td>13 (39.4)</td>
<td>0.112</td>
<td>10 (30.3)</td>
<td>0.354</td>
</tr>
<tr>
<td>SAP – mmHg</td>
<td>145.0 (134.0-150.0)</td>
<td>0.675</td>
<td>140.0 (128.0-151.5)</td>
<td>0.413</td>
</tr>
<tr>
<td>DAP – mmHg</td>
<td>75.0 (70.0-80.0)</td>
<td>0.593</td>
<td>74.0 (67.0-80.0)</td>
<td>0.341</td>
</tr>
<tr>
<td>Hypertension, n. (%)</td>
<td>29 (87.9)</td>
<td>0.653</td>
<td>24 (72.7)</td>
<td>0.429</td>
</tr>
<tr>
<td>Dyslipidemia, n. (%)</td>
<td>17 (51.5)</td>
<td>0.476</td>
<td>24 (72.7)</td>
<td>0.017</td>
</tr>
<tr>
<td>Diabetes duration – years</td>
<td>4.0 (2.0-13.0)</td>
<td>0.983</td>
<td>13 (38.2)</td>
<td>-</td>
</tr>
<tr>
<td>NAFLD, n. (%)</td>
<td>19 (70.4)</td>
<td>0.404</td>
<td>21 (63.6)</td>
<td>-</td>
</tr>
<tr>
<td>HbA1c - mmol/mol</td>
<td>50.8 (42.1-56.3)</td>
<td>0.312</td>
<td>38.8 (34.4-41.0)</td>
<td>0.831</td>
</tr>
<tr>
<td>- %</td>
<td>6.8 (6.0-7.3)</td>
<td></td>
<td>5.7 (5.3-5.9)</td>
<td></td>
</tr>
<tr>
<td>Total cholesterol – mmol/L</td>
<td>4.5 (3.7-5.0)</td>
<td>0.223</td>
<td>4.9 (4.1-5.4)</td>
<td>0.130</td>
</tr>
<tr>
<td>HDL cholesterol – mmol/L</td>
<td>1.2 (1.0-1.5)</td>
<td>0.562</td>
<td>1.4 (1.1-1.5)</td>
<td>0.088</td>
</tr>
<tr>
<td>Triglycerides – mmol/L</td>
<td>1.4 (1.0-2.0)</td>
<td>0.914</td>
<td>1.2 (1.0-1.7)</td>
<td>0.494</td>
</tr>
<tr>
<td>AST - U/L</td>
<td>21.0 (19.0-33.0)</td>
<td>0.513</td>
<td>25.0 (22.0-30.0)</td>
<td>0.593</td>
</tr>
<tr>
<td>ALT - U/L</td>
<td>28.0 (24.0-41.0)</td>
<td>0.270</td>
<td>31.0 (25.0-36.0)</td>
<td>0.005</td>
</tr>
<tr>
<td>Total Bilirubin – umol/L</td>
<td>10.0 (7.0-14.0)</td>
<td>0.257</td>
<td>12.0 (10.0-15.0)</td>
<td>0.957</td>
</tr>
<tr>
<td>hs-PCR – mmol/L</td>
<td>19.0 (9.5-38.1)</td>
<td>0.592</td>
<td>19.0 (9.5-38.1)</td>
<td>0.546</td>
</tr>
<tr>
<td>Platelet count – x10⁹/L</td>
<td>220.0 (179.0-241.0)</td>
<td>0.080</td>
<td>214.5 (178.2-240.5)</td>
<td>0.196</td>
</tr>
<tr>
<td>Mean Platelet Volume – fL</td>
<td>11.3 (10.6-11.9)</td>
<td>0.673</td>
<td>11.4 (11.1-12.0)</td>
<td>0.029</td>
</tr>
<tr>
<td>FPG – mmol/L</td>
<td>7.0 (5.7-7.6)</td>
<td>0.469</td>
<td>5.3 (4.7-5.5)</td>
<td>0.533</td>
</tr>
<tr>
<td>Serum Creatinine – umol/L</td>
<td>79.2 (61.6-88.0)</td>
<td>0.689</td>
<td>70.4 (61.6-79.2)</td>
<td>0.396</td>
</tr>
<tr>
<td>eGFR – ml/min</td>
<td>85.0 (67.4-97.0)</td>
<td>0.034</td>
<td>88.6 (65.3-106.0)</td>
<td>0.570</td>
</tr>
</tbody>
</table>
Reference range of “normal values”: AST, 5-34 U/L; ALT, 0-55 U/L; hs-C-reactive protein, 0-47.62 nmol/L; Platelet count, 150-450 x10^9/L; Total cholesterol, 0.0-5.17 mmol/L; HDL cholesterol, 1.03-1.55 mmol/L; Triglycerides, 0-1.69 mmol/L; Fasting plasma glucose, 4.61-6.11 mmol/L; Serum Creatinine, 50.2-97.7 umol/L; Fasting plasma glucose, 3.9-5.5 mmol/L; eGFR, >60 mL/min.

Abbreviations: BMI= body mass index, WHR= Waist to Hip ratio, SAP= systolic arterial pressure, DAP= diastolic arterial pressure, NAFLD= Nonalcoholic Fatty Liver Disease, HbA1c= glycated hemoglobin, HDL= high-density lipoproteins, AST= Aspartate Aminotransferase, ALT= Alanine amino Transferase, hs-PCR= hs-C-reactive protein, FPG= fasting plasma glucose, eGFR= estimated glomerular filtration rate. Data are median (25th – 75th percentile).

†Determined by Kruskal-Wallis or x^2 test, as appropriate.
Figure 1. Subjects with faster kinetics of recovery of serum thromboxane B$_2$ (sTXB$_2$) during the 24-hour aspirin dosing interval, display increased platelet COX-1 expression and urinary 11-dehydro-TXB$_2$ excretion as compared to those with normal sTXB$_2$ recovery.

Study design (A). Linear fitting of sTXB$_2$ measured 10 and 24h post-aspirin intake in patients without (B, n=100), and with T2DM (C, n=100) stratified in tertiles according to sTXB$_2$ (ex vivo index of COX-1-dependent TXA$_2$ production) slope (n=33/tertile) Patients in the third sTXB$_2$ slope tertile display significantly faster recovery of sTXB$_2$ vs. first tertile (p<0.001), during 24 hours between two witnessed aspirin administrations. sTXB$_2$ values are as median and interquartile range. Comparison of subjects in the third vs. first sTXB$_2$ slope tertile for platelet transcript levels of COX-1 mRNA (D, n= 20 vs. n=24) and urinary 11-dehydro-TXB$_2$ (E, n=66 vs. n=66). Significance was calculated by Mann-Whitney U test.

Figure 2. Proteomic Analysis shows activation of pathways “formation of cellular protrusions”, “formation of proplatelets”, “cell survival”, “production of reactive oxygen species”, and inhibition of “apoptosis” in platelets from patients with faster COX-1 recovery.

Proteomic Analysis using Ingenuity Pathway Analysis (IPA) revealed activation of “formation of cellular protrusions”, “formation of proplatelets”, “cell survival”, “production of reactive oxygen species”, and inhibition of “apoptosis” pathways in platelets of third vs. first sTXB$_2$ tertile in patients without (A and E), and with T2DM (B and E). Further details are reported in the Online Figure Supplementary S1, S2 and S3. Validation of proteomic data by western blot, assessing 78 kDa glucose-regulated protein (GRP78) (C, n=4/tertile), COX-1 (D, n=4/tertile) and Rab27B (F, n=4/tertile) in patients from third tertile vs. first tertile and healthy subjects (HS, n=4), using β-Actin as loading control. Significance was calculated by Student’s t-test.
Figure 3. Enhanced megakaryocytes (Mks) maturation and proplatelet formation (PPF) in patients with faster COX-1 recovery

Representative immunofluorescence of Mks (A) and PPF (B). The proportion of mature Mks was measured by flow cytometry, as the percentage and mean fluorescence intensity (MFI) of CD41-positive cells (healthy subjects n=5; first tertile: all n=8, T2DM n=4, noT2DM n=4; third tertile: all n=10, T2DM n=4, noT2DM n=6) (C-D); and as the percentage and MFI of GPIbα (CD42b)-positive cells (healthy subjects n=5; first tertile: all n=8, T2DM n=4, noT2DM n=4; third tertile: all n=11, T2DM n=5, noT2DM n=6) (C-D). PPF was quantified as the proportion of Mks displaying at least one proplatelet with respect to the total number of adhered Mks (healthy subjects n=5; first tertile: all n=7, T2DM n=4, noT2DM n=3; third tertile: all n=8, T2DM n=4, noT2DM n=4) (E).

Figure 4. Higher circulating levels of thrombopoietin (TPO) and platelet count and lower glycocalcin (GC) and glycocalcin index (GCI) at 24h after witnessed aspirin intake in patients with faster COX-1 recovery.

Comparison of TPO (A), GC (B) and GCI (C) between first vs. third sTXB2 slope tertile in all patients (n=132). Comparison of TPO (A) and GC (B) between healthy subjects (HS, n=5) vs. first and vs. third sTXB2 slope tertile in all patients (n=132). Significance was calculated by Mann-Whitney U test. Correlation between GCI and TPO in all investigated patients (D). Spearman correlation coefficient and p-value are reported. Platelet count in first vs. third tertile (C) in all patients (n=132). Significance was calculated by Mann-Whitney U test.

Figure 5. Lower GC circulating levels in platelets from patients with faster COX-1 recovery depend on higher GPIbα expression, lower phosphatidylserine expression and lower ADAM17 activation, and enhance TPO mRNA transcription in liver cells.

GPIbα protein levels in platelets of healthy subjects (HS, n=4) vs. first (n=4) vs. third (n=4) tertile in all patients (A). ADAM17 levels in platelets of healthy subjects (HS, n=3) vs. first
(n=4) vs. third sTXB₂ slope tertile (n=4) in all patients (B). PS-positive platelets (%CD41a+/AnV+) in the first (n=34) vs. third tertile (n=20) in all patients (C). PS-positive platelets (%CD41a+/AnV+) (D) and active-ADAM17 cleaved form (E) in 4 healthy subjects treated with low-dose aspirin, at 10h and 24h post-aspirin. Treatment of HepG2 cells (n=4) with an increasing concentrations of human recombinant GC (rGC, 0.5, 1 and 2 µg/ml) is associated, after 1 hour of incubation, with a significant dose-dependent reduction in TPO mRNA (F). Significance was calculated by Mann-Whitney U test or by Student’s t-test.

Figure 6. Higher platelet desialylation rate in patients with faster COX-1 recovery.

Expression levels of galactose-recognizing lectins, Erythrina cristagalli agglutinin (ECL, A), and Ricinus communis agglutinin I (RCA-I, B), in platelets of healthy subjects (HS, n=4) vs. first (n=4) vs. third (n=4) tertile in all patients. Expression levels of the sialidase Neu1 in the same subset (C). β-Actin was used as loading control. Significance was calculated by Student’s t-test.

Figure 7. Multivariable logistic regression analyses, receiver operating characteristic (ROC) curve for the prediction of poor aspirin response and proposed model depicting the mechanisms involving platelet lifespan that may limit the extent and duration of aspirin effect over 24 hours.

Determinants of the accelerated recovery of COX-1 activity in patients with (A) and without T2DM (B) assessed by multivariable logistic regression analysis. Receiver operating characteristic (ROC) curve for the prediction of poor aspirin response (C and D). ROC and the relative area under the curve (AUC) showing the ability of the model in discriminating between the third vs. first sTXB₂ slope tertile. Among patients with T2DM, the combination of younger age (SD=6.38 years), presence of NAFLD, higher platelet count (SD=55.66 µL) and higher TPO/GC ratio (1st tertile: <60; 2nd tertile: from 60 to 138; 3rd tertile >138) yielded
an AUC value of 0.883 (95%CI: 0.799 to 0.966) in distinguishing patients in third sTXB₂ slope tertile from first tertile patients (C). In comparison with a model including only clinical/hemocromocytometric variables (age, NAFLD and platelet count) the addition of TPO/GC ratio yielded a significant increase in AUC (from 0.754 to 0.883; P for difference 0.015). Among patients without T2DM, higher WHR (SD=0.066), lower mean platelet volume (SD=0.93 μL) and higher TPO/GC ratio (1st tertile: <76; 2nd tertile: from 76 to 147; 3rd tertile >147) yielded an AUC value of 0.880 (95%CI: 0.794 to 0.966) in distinguishing patients in third sTXB₂ slope tertile from first tertile patients (D). Aspirin-treated patients were stratified according to the kinetics of COX-1 recovery over the 10-24h dosing interval. In poor aspirin responders we showed: i. increased plasma thrombopoietin, megakaryocyte maturation and proplatelet formation reflecting enhanced platelet production; ii: increased platelet desialylation, lower phosphatidylserine exposure, lower platelet sheddase ADAM17 and plasma glycocalicin and increased glycoprotein (GP)Ibα expression, altogether reflecting defective platelet GPIbα shedding; iii: a proteomic signature characterized by activation of cell survival and inhibition of apoptosis. Younger age, non-alcoholic fatty liver disease and visceral obesity, higher platelet count together with higher thrombopoietin-to-glycocalicin ratio, predict suboptimal aspirin response. PLT, platelets; PPF, proplatelet formation; GC, glycocalicin; MK, megakaryocyte. sTXB₂, serum thromboxane B₂ (E).
Fig. 1

A

100 T2DM
100 noT2DM
on low-dose aspirin treatment for at least 1 year

<table>
<thead>
<tr>
<th>DAY 1</th>
<th>DAY 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 am T0h</td>
<td>8 am T24h</td>
</tr>
<tr>
<td>6 pm T10h</td>
<td></td>
</tr>
</tbody>
</table>

7-day run-in during which patients were instructed to take aspirin 100 mg/die at 8 am

START

ASPIRIN «witnessed aspirin intake»

END

Blood sampling
Urine sampling

B

noT2DM p<0.001

<table>
<thead>
<tr>
<th>sTXB₂ (ng/ml)</th>
<th>10H</th>
<th>24H</th>
</tr>
</thead>
<tbody>
<tr>
<td>I TERTILE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II TERTILE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III TERTILE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C

T2DM p<0.001

<table>
<thead>
<tr>
<th>sTXB₂ (ng/ml)</th>
<th>10H</th>
<th>24H</th>
</tr>
</thead>
<tbody>
<tr>
<td>I TERTILE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II TERTILE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III TERTILE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D

p=0.014

[Graph showing COX-1/2-microglobulin mRNA levels across tertiles] ALL 1st Tertile 3rd Tertile

E

p=0.022

[Graph showing Urinary 11-dH-TXB₂ levels across tertiles] ALL 1st Tertile 3rd Tertile
A noT2DM

- Formation of cellular protrusion (Z-score=2.43)
- Cell survival (Z-score=1.54)
- Apoptosis (Z-score=-0.58)
- Production of reactive oxygen species (Z-score=2.06)

B T2DM

- Formation of cellular protrusion (Z-score=1.92)
- Cell survival (Z-score=2.01)
- Apoptosis (Z-score=-1.86)
- Production of reactive oxygen species (Z-score=2.37)

C

<table>
<thead>
<tr>
<th></th>
<th>HS</th>
<th>1st Tertile</th>
<th>3rd Tertile</th>
<th>noT2DM</th>
<th>T2DM</th>
<th>noT2DM</th>
<th>T2DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>kDa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Healthy Subject</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRP78</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-Act</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th></th>
<th>HS</th>
<th>1st Tertile</th>
<th>3rd Tertile</th>
<th>noT2DM</th>
<th>T2DM</th>
<th>noT2DM</th>
<th>T2DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>kDa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Healthy Subject</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COX-1</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-Act</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E

- Formation of proplatelets

F

<table>
<thead>
<tr>
<th></th>
<th>HS</th>
<th>1st Tertile</th>
<th>3rd Tertile</th>
<th>noT2DM</th>
<th>T2DM</th>
<th>noT2DM</th>
<th>T2DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>kDa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Healthy Subject</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rab27B</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-Act</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 4

A

\[\text{TPO pg/mL} \]

\[\text{HS} \quad 1\text{st Tertile} \quad 3\text{rd Tertile} \]

\[p=0.001 \quad p=0.004 \]

B

\[\text{Glycocalcin (ug/mL)} \]

\[\text{HS} \quad 1\text{st Tertile} \quad 3\text{rd Tertile} \]

\[p<0.001 \quad p<0.001 \]

C

\[\text{PLT Count} \times 10^9/\mu L \]

\[1\text{st Tertile} \quad 3\text{rd Tertile} \]

\[p=0.024 \]

D

\[\text{Glycocalcin index} \]

\[1\text{st Tertile} \quad 3\text{rd Tertile} \]

\[p<0.001 \]

E

\[\text{TPO pg/mL} \]

\[\text{Glycocalcin index} \]

\[\text{rho}=-0.245 \quad p=0.006 \]
Table A: T2DM

<table>
<thead>
<tr>
<th>Variable</th>
<th>OR</th>
<th>95% CI</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (1 SD increment)</td>
<td>0.44</td>
<td>0.21-0.93</td>
<td>0.031</td>
</tr>
<tr>
<td>NAFLD (ys vs no)</td>
<td>3.74</td>
<td>0.65-21.5</td>
<td>0.14</td>
</tr>
<tr>
<td>Platelet Count (1 SD increment)</td>
<td>1.79</td>
<td>0.83-3.88</td>
<td>0.14</td>
</tr>
<tr>
<td>TPO/GC II tertile vs. I tertile</td>
<td>12.30</td>
<td>2.14-70.8</td>
<td>0.0049</td>
</tr>
<tr>
<td>TPO/GC III tertile vs. I tertile</td>
<td>34.05</td>
<td>4.94-234.6</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

Table B: noT2DM

<table>
<thead>
<tr>
<th>Variable</th>
<th>OR</th>
<th>95% CI</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHR (1 SD increment)</td>
<td>3.43</td>
<td>1.49-7.88</td>
<td>0.0037</td>
</tr>
<tr>
<td>MPV (1 SD increment)</td>
<td>0.50</td>
<td>0.25-0.99</td>
<td>0.049</td>
</tr>
<tr>
<td>TPO/GC II tertile vs. I tertile</td>
<td>10.56</td>
<td>1.82-61.38</td>
<td>0.0086</td>
</tr>
<tr>
<td>TPO/GC III tertile vs. I tertile</td>
<td>11.06</td>
<td>2.20-55.72</td>
<td>0.0036</td>
</tr>
</tbody>
</table>

Diagram C: T2DM

- ROC Curve (area) for T2DM
 - Clinical and Hemocromocytometric variables (0.7538)
 - TPO/GC (0.7571)
 - All (0.8826)

Diagram D: noT2DM

- ROC Curve (area) for noT2DM
 - Clinical and Hemocromocytometric variables (0.8188)
 - TPO/GC (0.7493)
 - All (0.8802)

Diagram E: Poor Aspirin Responder

- Hepatocyte
 - TPO
 - Galactose
 - GPIbα
 - PS
 - PLT

- Liver

- Bone Marrow
 - MK
 - PPF

- Poor Aspirin Responder
 - Clearance
 - Thrombopoiesis
 - Younger Age
 - NAFLD
 - MPV
 - WHR
 - PLT count
 - TPO/GC
Supplementary extended study participants, methods and results Appendix

Title: Reduced platelet glycoprotein Ibα shedding accelerates thrombopoiesis and COX-1 recovery: implications for aspirin dosing regimen

Short Title: Platelet lifespan imbalance and aspirin response

Online Supplementary Methods: pages 2-8
Online Supplementary Results: page 9-10
Online Supplementary References: page 11
Online Supplementary Figure S1: page 12
Online Supplementary Figure S2: page 13
Online Supplementary Figure S3: page 14
Online Supplementary Figure S4: page 15
Online Supplementary Figure S5: page 16
Online Supplementary Table S1: pages 17-19
Online Supplementary Table S2: page 20-21
Online Supplementary Table S3: pages 22
Online Supplementary Table S4: pages 23-25
Online Supplementary Table S5: pages 26-28
Online Supplementary Table S6: page 29-31
Online Supplementary Table S7: page 32
Online Supplementary Methods

Study participants

For all patients, inclusion criteria included: age between 45 and 80 years, body mass index (BMI) between 20 and 45 kg/m². A diagnosis of overt type 2 diabetes mellitus (T2DM), according with the ADA criteria¹, was also required for the T2DM group.

Exclusion criteria were poorly controlled hypertension or hypercholesterolemia, smoking, pregnancy or lactation, impaired liver or renal function, history of malignant neoplasms (diagnosed and treated within the last 5 years), history of malabsorption, regular (daily) consumption of alcohol, or treatment with non-steroidal anti-inflammatory drugs (NSAIDs), anticoagulants or other antiplatelet drugs. Type 1 diabetes was suspected and excluded with islet autoantibodies evaluation (anti-glutamic acid decarboxylase, islet cell cytoplasmic, and IA-2 antibodies), when one of the following applied: family history of type 1 diabetes, age lower than 40, lean phenotype, precocious requirement for insulin therapy. No patient was diagnosed as having MODY (Maturity Onset Diabetes of the Young).

Liver Ultrasound

The grading of liver steatosis has been obtained using a high-resolution ultrasound System (GE Heathcare), equipped with a 3.5-MHz convex- array probe. Subjects were examined in the supine position. Ultrasound features included liver brightness, contrast between the liver and the kidney, US appearance of the intrahepatic vessels, liver parenchyma and diaphragm. Steatosis was graded as follows: absent (score 0) when the echotexture of the liver is normal; mild (score 1), when there is a slight and diffuse increase of liver echogenicity with normal visualization of the diaphragm and of the portal vein wall; moderate (score 2), in case of a moderate increase of liver echogenicity with slightly impaired appearance of the portal vein wall and the diaphragm; severe (score 3), in case of marked increase of liver echogenicity with poor or no visualization of portal vein wall, diaphragm, and posterior part of the right liver lobe ². The examinations were assessed by the same operator, to reduce the variability.

Biochemical measurements and glycocalcin index (GCI)

Serum thromboxane B₂ (sTXB₂) produced during whole blood clotting ex vivo³ was measured with
an enzyme-immunoassay (EIA) (Cayman Chemical, Ann Arbor, MI). Urinary 11-dehydro-TXB₂, a major TXA₂ metabolite reflecting TXA₂ biosynthesis rate, was measured with validated liquid chromatography–tandem mass spectrometry (LC-MS-MS).

Thrombopoietin (TPO) (R&D Systems, Minneapolis, MN) and glycocalicin (GC) (Cusabio Technology, Houston, TX), ELISA kits were used on ethylenediamine tetraacetic acid (EDTA) plasma.

The glycocalicin index (GCI), a parameter of platelet destruction, was calculated as:

\[\text{GCI} = \frac{[\text{GC concentration (μg/mL) x 250x10⁹ platelet/L/individual platelet count x 10⁹/L}] }{ } \]

Normal GCI is 0.7 (0.6-0.9).

Proteomics data processing and bioinformatics parameters

Proteomics analysis was performed on pooled platelet samples by selecting 10 patients (with or without T2DM) per group according to their homogeneous clinical and demographical parameters. Samples were analyzed in triplicate (third vs. first tertile) by LC-MS/MS and processed using MaxQuant 1.6.6.0 as previously reported. For protein identification and quantification carbamidomethylation of cysteines I was defined as fixed modification, while oxidation of methionines (M), deamidation of asparagines (N) and glutamines (Q) were set as variable modifications. Mass tolerances were set by default to 0.07 Da in the first search and 0.006 Da in the main search, while TOF MS/MS match tolerance was set to 0.05 Da. A retention time tolerance of 0.7 min was used to align any time shift in acquisition between samples. Match-between-runs (MBR) algorithm was used to transfer the peptide identifications from one LC-MS/MS run to all others using its default settings (match window of 0.7 min and alignment time of 20 min). False discovery rate (FDR) at the protein level was set at 2%, on the contrary at peptide level was set at 1%. Intensity-based absolute quantification (iBAQ) was used to quantify protein abundance in each sample in the bioinformatics analysis performed with Perseus, version 1.6.10.50. (Max-Planck Institute for Biochemistry, Martinsried, Germany) uploading the protein groups generated by MaxQuant. Data were log₂ transformed in order to facilitate the calculation of the protein expression. Site only, reverse and contaminant peptides were removed from the dataset. Then, the missing and invalid values were removed.
The minimum number of valid values accepted was set at 2 in at least one treatment condition. In this way we have evaluated not only the different protein expression, but also the presence and absence of proteins between the different clinical conditions. The expression of common proteins between two clinical groups (third vs. first tertile) in both patients without T2DM (Online Supplementary Figure S1A) and with T2DM (Online Supplementary Figure S1B) was evaluated comparing the iBAQ (log₂ transformed) of the proteins in the density plot with Pearson correlation (R²). A Volcano plot function was used to identify the differentially regulated proteins by performing a T-test with a false discovery rate (FDR) of 0.22 and a S₀ of 0.05 (Online Supplementary Figure S2).

The quality of our proteomic data is evaluated by using Platelet W–b - Systems Biology Workbench. Gene Ontology and Comparison Analysis were performed using Ingenuity Pathway Analysis (IPA, Qiagen, Hilden, Germany) by loading the protein ratio for each comparison (third vs. first tertile) both for patients with T2DM and without T2DM. We considered molecules and/or relationships in all species and a confidence setting as “high predicted” or “experimental observed” (excluding medium predicted). The predicted activation or inhibition of each transcriptional regulator or downstream was inferred by the IPA-generated z-scores¹¹ (Online Supplementary Figure S2).

Immunoprecipitation

For immunoprecipitation, platelet lysates (200 µg of total protein) were precleared by incubation with protein A-Sepharose (Sigma Aldrich). Precleared lysates were incubated with 2 µg of anti-14-3-3ξ antibody (Santa Cruz Biotechnology) for 2 h at 4°C on a rotatory shaker, followed by adding 100 µL of 50 mg/ml protein A-Sepharose and incubation for 1 hour at 4°C on a rotatory shaker. Beads were washed three times in lysis buffer and samples were eluted with Laemmli buffer at 95°C for 5 minutes. Protein lysates were subjected to 12% sodium dodecyl sulfate–polyacrylamide gel electrophoresis and transferred to polyvinylidene fluoride membrane.

Megakaryocyte maturation

CD45⁺ cells were separated from peripheral blood samples obtained from healthy subjects and patients by immunomagnetic bead selection (Miltenyi Biotech, Bologna, Italy) and cultured in Stem Span
medium (Stem Cell Technologies, Canada) supplemented with 1% L-glutamine, 1% penicillin-streptomycin, 10 ng/mL recombinant human thrombopoietin and 10 ng/mL recombinant human interleukin-11 (PeproTech, London, UK) for 14 days as previously described. To evaluate Mk maturation, at the end of the culture, aliquots of 50 x 10^3 cells were collected, washed in PBS, and double-stained with the FITC-conjugated monoclonal antibody HIP8 against CD41 (eBioscience, ThermoFisher Scientific) and the PE-conjugated monoclonal antibody HIP1 against glycoprotein (GP)Ibα (CD42b, Abcam, Cambridge, UK). Cells were analyzed using a Navios flow cytometer (Beckman Coulter). A minimum of 10,000 events was acquired. Off-line data analysis was performed using the Beckman Coulter Navios software package. The maturation of Mks was measured as the percentage and mean fluorescence intensity of CD41 and GPIbα positive cells.

Proplatelet formation (PPF) assay

PPF was investigated in adhesion to fibrinogen according to a previously described protocol. At the end of the culture, large Mks were separated by a bovine serum albumin gradient (3-4%). 1 x 10^5 Mks were allowed to adhere at 37°C and 5% CO₂ for 16 hours onto glass coverslips coated with 100 µg/mL fibrinogen (Merck-Millipore, Milan, Italy). Samples were then fixed with 4% paraformaldehyde, permeabilized with 0.5% Triton X-100, blocked with 5% BSA and stained with the anti-β1-tubulin antibody (Abcam). An Alexa Fluor 488-conjugated goat anti-rabbit antibody (Life Technologies, Monza, Italy) was used as secondary antibody. Hoechst was used for counterstaining nuclei. Proplatelet forming Mk were identified by fluorescence microscopy as the β1-tubulin positive cells displaying at least one proplatelet with respect to the total number of β1-tubulin positive cells. At least 10 fields per sample were analyzed using an Olympus IX53 microscope (Olympus Deutschland GmbH, Hamburg, Germany).

Western Blot Antibodies

The used primary antibodies were: anti-78 kDa glucose-regulated protein (GRP78, 1:1000; clone 76-E6, sc-13539, Santa Cruz Biotechnology), anti-β-actin (1:5000; Sigma Aldrich), anti-cyclooxygenase (COX)-1 (1:1000; clone CX111, Cayman Chemical), anti-Rab27B (1:1000; 44813 Cell Signaling), anti-GPIbα (1:10000; EPR6995, ab27901, Abcam), anti-a disintegrin and metalloprotease 17 (ADAM17,
1:1000; Ab2051, Abcam), and anti-neuraminidase (Neu)1 (1:1000; Invitrogen), anti-caspase 3 (Caspase 3, 1:1000; sc-7272, Santa Cruz). The used horseradish peroxidase-conjugated secondary antibodies were: goat anti-mouse (1:3000, Calbiochem) or goat anti-rabbit (1:5000, Calbiochem).

The used lectins were: biotinylated *Erythrina cristagalli* (ECL, 1:3000), and biotinylated *Ricinus communis agglutinin I* (RCA-I, 1:3000) as previously described. Immunoreactive bands were detected by horseradish peroxidase-labeled streptavidin (1:3000).

Finally, the blots were developed using Western Lightning Chemiluminenscence Reagent (PerkinElmer) and immunoblot images were acquired with Alliance 4.7 (UVITEC, Cambridge, UK). The intensity of the relevant bands was evaluated using the ImageJ NIH Image Analysis Program.

Quantitative Real-time PCR (qRT-PCR)

Platelet RNA was extracted by using Total RNA Purification Kit (Norgen), and the retrotranscription of 500 ng was performed by Omniscript RT Kit (Qiagen). qRT-PCRs were performed using miSCRIPT Syber Green PCR Kit (Qiagen). Primers (5’ to 3’) used were:

- COX-1 forward TCATCAGGGAGTCTCGGGAG, reverse ATTCCTCCAACTCTGCTGCC;
- β2-microglobulin forward GCTCGCGCTACTCTCTTT, reverse TGTCGGATGGATGAAACCCA;
- thrombopoietin (TPO) forward, ACTGCTTCGTGACTCCCATG, reverse AGGAGGGATGAGGGCAAGT;
- cyclophilin (cyclo) A forward, AGTCCATCTATGGGAGAATTTG reverse GCCTCCACAATATTCCGCTCTC.

Platelet Annexin V

Platelet staining for flow cytometry analyses were carried out by adding 5 µL of peripheral blood samples to the reagent mix detailed in Supplementary Table S3. 1 x 10^6 events/sample were acquired by flow cytometry (FACSVerse, BD Biosciences), and data were analyzed using FACSuite v 1.0.6.5230 and FlowJo X v 10.0.7 software (BD Biosciences). Platelets were identified on an FSC-H/SSC-H dot plot and then they were analyzed for their positivity to CD41a. CD41a+ platelets were gated and analyzed for their
Annex V positivity15.

Total and platelet derived Annexin V Extracellular vesicles

Extracellular-vesicles, total and platelet derived, for flow cytometry analyses were carried out by adding 5 µL of peripheral blood samples to the reagent mix15 prepared by adding to 195 µL of binding buffer 1X (BD Biosciences) the dyes and antibodies (1 µl Lypophilic Cationic Dye (LCD) APC 626267 BD Biosciences; 5 µL CD41a BV510 563250 BD Biosciences; 1 µL Annexin V 450 560506 BD Biosciences) and incubated for 45 minutes (RT, in the dark). Finally, samples were adequately diluted with binding buffer 1X (1:143), and no swarm effects occurred15 when they were acquired (1 x 106 events/samples) by flow cytometry (FACSVerse, BD Biosciences). All requirements imposed for polychromatic flow cytometry EV analysis were considered16. The trigger threshold was placed on the channel in which the dye used to stain EVs emits (lipophilic cationic dye, allophycocyanin—APC—channel, threshold value = 200/262.144). For all used parameters the height (H) signals and bi-exponential or logarithmic modes were selected. Instrument performances, data reproducibility, and fluorescence calibrations were sustained by the Cytometer Setup & Tracking Module (BD Biosciences). The evaluation of non-specific fluorescence was obtained by acquiring fluorescence minus one control combined with the respective isotype control. Compensation was automatically calculated. Data were analyzed using FACSuite v 1.0.6.5230 (BD Biosciences) and Flow Jo X v 10.0.7 (BD Biosciences) software. EV concentrations were obtained by the volumetric count function17. EVs were identified and subtyped as already reported15. Briefly, within the gate of intact EVs (LCD+/Phalloidin-), platelets derived EVs were identified as CD41a+ events. Each of the above-mentioned EV subsets were also analyzed for the surface expression of phosphatidylserine (AnV+).

In vitro HepG2 cells treatment

Human HepG2 hepatocarcinoma cells were grown as previously reported18 in DMEM high glucose, pyruvate (GIBCO, Thermo Fisher Scientific), 10% heat-inactivated fetal bovine serum (FBS; GIBCO, Thermo Fisher Scientific), 10,000 U ml-1 penicillin G and 10 mg ml-1 streptomycin sulphate. For in vitro assay, the HepG2 cells were transferred to 12-well plates (106 per well), allowed to adhere for 24 hours,
and treated with a commercially available recombinant human GPIba peptide (rGC, 4067-GP R&D Systems) at the indicated concentration for 1 hour and for 24 hours at 37°C. DMSO was used as control. After the incubation period, the HepG2 cells were lysed in order to harvest the mRNA (after 1 hours) and culture supernatants (after 24 hours) were collected for TPO assay as described above. The rGC protein (His 17-Leu 505) was expressed in mouse myeloma cells (90-120 kDa apparent molecular weight under SDS-PAGE).
Online Supplementary Results

Clinical characteristics

All subjects with T2DM were at high (n=64) or very high (n=36) CV risk, according to the 2019 ESC guidelines. Among those without T2DM, 53 patients had very-high CV risk, 28 high risk, 18 moderate and 1 low risk. Patients without T2DM in primary prevention (n=78) had an average 10-year risk of fatal CVD of 12.3% according to European SCORE.

Demographic, anthropometric, and clinical parameters of two groups of patients with vs. without diabetes were fairly balanced, except for higher BMI (p=0.026), HOMA-IR (p=0.038), higher prevalence of non-alcoholic-fatty-liver disease (NAFLD) (p<0.001) and retinopathy (p=0.007), lower total cholesterol (p=0.003) levels (with higher prevalence of statin treatment, p=0.015), lower total bilirubin (p=0.006), red blood cell count (p<0.001), hemoglobin (p<0.001), and hematocrit (p<0.001) in T2DM patients (Online Supplementary Table S1).

As expected, patients were significantly different for diabetes-specific treatment such as metformin (p<0.001), glinides (p=0.001), PPAR-γ agonists (p<0.001), insulin (p=0.029), for glycated hemoglobin % (p<0.001), and fasting plasma glucose (p<0.001). Notably, median HbA1c in T2DM patients was 51.0 mmol/mol (6.8%), reflecting good glycemic control in T2DM patients in the group of patients with diabetes (Online Supplementary Table S1).

T2DM patients of the third tertile had higher platelet counts (p=0.080 across the three groups, p=0.047 third vs. first tertile), a higher prevalence of NAFLD (p=0.04) and a nonsignificant trend for higher HOMA-IR (p=0.071) third vs. first tertile (Table 1).

Among patients without T2DM, while platelet count (p=ns) did not change across sTXB₂ recovery slope tertiles, MPV (p=0.029) was lower in patients of third vs. first tertile. Moreover, patients in the upper tertile had a lower prevalence of dyslipidemia (p=0.017) and lower rate of statin treatment (p=0.014) vs. first tertile (Table 1 and Online Supplementary Table S2).

sTXB₂ recovery slope was inversely related to age and directly related to BMI, waist circumference, estimated glomerular filtration rate (eGFR) in T2DM patients (Online Supplementary
Among patients without T2DM, the sTXB₂ recovery slope was directly related to weight, waist circumference, WHR and diastolic arterial pressure (Online Supplementary Table S7).

Inhibited apoptosis in patients of the third tertile

We found no differences in annexin-V-positive, both total and platelet-derived, extracellular vesicles, in patients of first (n=35) vs. third (n=21) tertile (Online Supplementary Figure S5A), to corroborate that the faster recovery of COX-1 and differential PS exposure is not linked to different pro-coagulant properties of third tertile platelets.

In the intrinsic apoptotic pathway of PLTs, the activation of the effector caspsases (Caspase-3/7) determines the subsequent exposure of PS on the membrane.⁹⁻¹³ We observed lower levels of caspase 3 in patients of third vs. first tertile (p=0.042, Online Supplementary Figure S5B) and vs. healthy subjects (p=0.015, Online Supplementary Figure S5B), supporting inhibition of apoptosis in our patients with accelerated platelet COX-1 recovery.

Based on data showing “inhibition of apoptosis” and enhanced GPIbα receptor levels in poor aspirin responder, we investigated whether the different recovery of COX-1 activity reflected differences in 14-3-3ζ platelet immunoprecipitates of complexes 14-3-3ζ-GPIbα and 14-3-3ζ-COX-1 in patients of first (n=3) vs. third tertile (n=3) (Online Supplementary Figure S5C). We observed significantly lower levels of 14-3-3ζ:GPIbα complexes (p=0.016, Online Supplementary Figure S5C) and higher levels of 14-3-3ζ:COX-1 complexes (p=0.019, Online Supplementary Figure S5C) in patients of third vs. first tertile, thus confirming inactivated apoptosis in patients of third tertile and providing a mechanistic link between COX-1 acetylation or inhibition and GPIbα clustering.
Online Supplementary References

Online Supplementary Figure S1: Density Plot of protein expression in patients without T2DM (A) and with T2DM (B). Protein expression is reported as density value of iBAQ: data points with the highest density are light blue, on the contrary data points with lowest density are bright green. The color gradient is report in the legend made on comparison between third vs. first tertile both in patients without and with T2DM.
Online Supplementary Figure S2: IPA networks legend. The figure shows the color and shape key to read the IPA networks reported in the work. Red and green color: increased or decreased measurements of quantified proteins. Blue and orange shapes: predicted inhibition (z-scores ≤ −2.0) and activation (z-scores ≥ 2.0). Direct activation: orange solid lines; direct inhibition: blue solid lines. Indirect relationships: dotted lines. Yellow and grey lines: “inconsistent” or “not predicted” relationship effects.
Online Supplementary Figure S3

Online Supplementary Figure S3: Volcano Plots of differentially expressed proteins in the different clinical groups, in patients without and with T2DM (A and B, respectively). Proteins were graphed by fold change (Difference) and -Log (p value) using a false discovery rate (FDR) of 0.22 and an S_0 of 0.05 for both graphs. Grey dots represent proteins that are not differentially expressed; while red and blue dots represent proteins that are significantly up-regulated in the pooled platelets of third tertile and up-regulated in the pooled platelets of first tertile, respectively, in both the clinical conditions.
Online Supplementary Figure S4: Higher circulating levels of thrombopoietin (TPO) and platelet (PLT) count and lower glycocalcin (GC) and glycocalcin index (GCI) at 24h after witnessed aspirin intake in patients with faster COX-1 recovery. Comparison of TPO (A), GC (B), GCI (C) and PLT count (E) between first and third sTXB$_2$ slope tertile in patients without (n=66) and with T2DM (n=66). Comparison of TPO (A) and GC (B) in third vs. first sTXB$_2$ slope tertile and vs. healthy subjects (HS, n=5) in patients without (n=66) and with T2DM (n=66). Significance was calculated by Mann-Whitney U test. Correlation between GCI and TPO in patients without and with T2DM (D). Spearman correlation coefficient and p-value are reported.
Online Supplementary Figure S5: Inhibited apoptosis in patients of the third tertile. The number of AnnexinV-positive extracellular vesicles (Total EVs AnV+ and CD41a+ PLT AnV+ derived) was measured in patients of first (n=35) and third tertile (n=21) (A); Expression levels of caspase 3 in healthy subjects (n=4), patients of first (n=4) and third tertile (n=4). β-Actin was used as loading control (B); Measurement in 14-3-3ζ platelet immunoprecipitates of complexes 14-3-3ζ-COX-1 and 14-3-3ζ-GPIba in patients of first (n=3) and third tertile (n=3) (C). Significance was calculated by Mann-Whitney U test or by Student’s t-test.
Online Supplementary Table S1. Characteristics of patients with and without type 2 diabetes mellitus (T2DM)

<table>
<thead>
<tr>
<th>Variable</th>
<th>noT2DM</th>
<th>T2DM</th>
<th>P value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.</td>
<td>100</td>
<td>100</td>
<td>1.000</td>
</tr>
<tr>
<td>Age – years</td>
<td>69.0 (63.0-74.0)</td>
<td>68.0 (64.0-72.8)</td>
<td>0.989</td>
</tr>
<tr>
<td>Male gender, n.</td>
<td>57</td>
<td>64</td>
<td>0.386</td>
</tr>
<tr>
<td>Smoke, n.</td>
<td>10</td>
<td>13</td>
<td>0.658</td>
</tr>
<tr>
<td>Weight – Kg</td>
<td>77.0 (67.0-85.8)</td>
<td>80.0 (72.4-91.8)</td>
<td>0.084</td>
</tr>
<tr>
<td>BMI - Kg/m²</td>
<td>27.9 (25.2-31.1)</td>
<td>29.9 (25.8-33.0)</td>
<td>0.026</td>
</tr>
<tr>
<td>Waist circumference – cm</td>
<td>100.0 (92.3-110.0)</td>
<td>104.0 (96.0-111.0)</td>
<td>0.069</td>
</tr>
<tr>
<td>WHR</td>
<td>1.0 (0.9-1.0)</td>
<td>1.0 (0.9-1.0)</td>
<td>0.290</td>
</tr>
<tr>
<td>Obesity, n.</td>
<td>40</td>
<td>49</td>
<td>0.255</td>
</tr>
<tr>
<td>Systolic arterial pressure – mmHg</td>
<td>140.0 (128.3-153.8)</td>
<td>146.0 (134.3-152.0)</td>
<td>0.120</td>
</tr>
<tr>
<td>Diastolic arterial pressure – mmHg</td>
<td>77.0 (70.0-83.0)</td>
<td>75.0 (70.0-80.0)</td>
<td>0.626</td>
</tr>
<tr>
<td>Hypertension, n.</td>
<td>80</td>
<td>90</td>
<td>0.073</td>
</tr>
<tr>
<td>Glycated hemoglobin - mmol/mol</td>
<td>38.8 (35.5-42.1)</td>
<td>50.8 (45.4-58.5)</td>
<td>0.000</td>
</tr>
<tr>
<td>- %</td>
<td>5.7 (5.4-6.0)</td>
<td>6.8 (6.3-7.5)</td>
<td></td>
</tr>
<tr>
<td>Diabetes duration – years</td>
<td>-</td>
<td>5.0 (2.0-10.0)</td>
<td>-</td>
</tr>
<tr>
<td>Total cholesterol – mmol/L</td>
<td>4.9 (4.1-5.5)</td>
<td>4.4 (3.8-5.0)</td>
<td>0.003</td>
</tr>
<tr>
<td>HDL cholesterol – mmol/L</td>
<td>1.3 (1.1-1.5)</td>
<td>1.3 (1.0-1.5)</td>
<td>0.160</td>
</tr>
<tr>
<td>Triglycerides – mmol/L</td>
<td>1.3 (0.9-1.7)</td>
<td>1.4 (1.0-1.9)</td>
<td>0.198</td>
</tr>
<tr>
<td>Dyslipidemia, n.</td>
<td>54</td>
<td>60</td>
<td>0.475</td>
</tr>
<tr>
<td>AST - U/L</td>
<td>24.0 (21.0-28.0)</td>
<td>24.0 (20.0-31.0)</td>
<td>0.851</td>
</tr>
<tr>
<td>ALT - U/L</td>
<td>28.5 (24.0-33.0)</td>
<td>31.0 (25.0-40.8)</td>
<td>0.076</td>
</tr>
<tr>
<td>Total Bilirubin – umol/L</td>
<td>12 (10-15)</td>
<td>10 (9-14)</td>
<td>0.006</td>
</tr>
<tr>
<td>NAFLD, n.</td>
<td>52</td>
<td>76</td>
<td>0.000</td>
</tr>
<tr>
<td>hs-C-reactive protein – mmol/L</td>
<td>19.0 (9.5-38.1)</td>
<td>19.0 (9.5-47.6)</td>
<td>0.619</td>
</tr>
<tr>
<td>Red Blood Cell count, x10^12/L</td>
<td>4.9 (4.5-5.1)</td>
<td>4.6 (4.4-4.9)</td>
<td>0.000</td>
</tr>
<tr>
<td>Hemoglobin – g/dL</td>
<td>14.3 (13.5-15.3)</td>
<td>13.7 (12.8-14.4)</td>
<td>0.000</td>
</tr>
<tr>
<td>Hematocrit – %</td>
<td>42.6 (40.0-45.1)</td>
<td>38.3 (40.1-42.4)</td>
<td>0.000</td>
</tr>
<tr>
<td>Red cell Distribution Width –</td>
<td>13.2 (12.8-13.8)</td>
<td>12.8 (13.3-13.9)</td>
<td>0.491</td>
</tr>
<tr>
<td></td>
<td>Group 1</td>
<td>Group 2</td>
<td>p-value</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Platelet count – 10^9/L</td>
<td>223.5 (189.3-266.0)</td>
<td>227.0 (191.0-264.3)</td>
<td>0.963</td>
</tr>
<tr>
<td>Platelet Distribution Width – fL</td>
<td>13.7 (12.3-15.0)</td>
<td>13.8 (12.4-15.4)</td>
<td>0.538</td>
</tr>
<tr>
<td>Mean Platelet Volume – fL</td>
<td>11.2 (10.5-11.7)</td>
<td>11.3 (10.6-11.9)</td>
<td>0.500</td>
</tr>
<tr>
<td>White Blood Cell count – 10^9/L</td>
<td>6.6 (5.6-7.8)</td>
<td>7.0 (5.8-8.3)</td>
<td>0.130</td>
</tr>
<tr>
<td>Fasting plasma glucose – mmol/L</td>
<td>5.29 (4.89-5.67)</td>
<td>6.75 (5.79-7.61)</td>
<td>0.000</td>
</tr>
<tr>
<td>Fasting plasma Insulin – pmol/L</td>
<td>67.4 (54.2-95.8)</td>
<td>72.9 (51.4-102.7)</td>
<td>0.784</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>2.4 (1.7-3.2)</td>
<td>3.2 (1.9-5.0)</td>
<td>0.038</td>
</tr>
<tr>
<td>Serum Creatinine – umol/L</td>
<td>70.4 (61.6-88.0)</td>
<td>70.4 (61.6-79.2)</td>
<td>0.221</td>
</tr>
<tr>
<td>eGFR – ml/min</td>
<td>88.0 (72.5-99.6)</td>
<td>88.8 (78.0-98.6)</td>
<td>0.222</td>
</tr>
<tr>
<td>Uric Acid – umol/L</td>
<td>327.1 (267.7-410.4)</td>
<td>333.1 (273.6-386.6)</td>
<td>0.990</td>
</tr>
<tr>
<td>Aspirin treatment duration - years</td>
<td>4.0 (2.0-8.0)</td>
<td>5.0 (2.0-10.0)</td>
<td>0.190</td>
</tr>
<tr>
<td>Cardiovascular disease, n.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stable CAD</td>
<td>6</td>
<td>11</td>
<td>0.311</td>
</tr>
<tr>
<td>Carotid stenosis (>50%), n.</td>
<td>30</td>
<td>42</td>
<td>0.105</td>
</tr>
<tr>
<td>MI or revascularization</td>
<td>11</td>
<td>16</td>
<td>0.308</td>
</tr>
<tr>
<td>Stroke, TIA or revascularization</td>
<td>11</td>
<td>9</td>
<td>0.814</td>
</tr>
<tr>
<td>Peripheral artery disease</td>
<td>1</td>
<td>6</td>
<td>0.118</td>
</tr>
<tr>
<td>Diabetic microvascular disease, n.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retinopathy</td>
<td>0</td>
<td>8</td>
<td>0.007</td>
</tr>
<tr>
<td>Nephropathy</td>
<td>0</td>
<td>2</td>
<td>0.497</td>
</tr>
<tr>
<td>Neuropathy</td>
<td>0</td>
<td>1</td>
<td>1.000</td>
</tr>
<tr>
<td>Therapy, n.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metformin</td>
<td>1</td>
<td>63</td>
<td>0.000</td>
</tr>
<tr>
<td>Glinide</td>
<td>0</td>
<td>11</td>
<td>0.001</td>
</tr>
<tr>
<td>PPAR-γ agonists</td>
<td>0</td>
<td>12</td>
<td>0.000</td>
</tr>
<tr>
<td>Sulfonylurea</td>
<td>0</td>
<td>4</td>
<td>0.121</td>
</tr>
<tr>
<td>Insulin</td>
<td>0</td>
<td>6</td>
<td>0.029</td>
</tr>
<tr>
<td>Medication</td>
<td>Median (25th – 75th percentile)</td>
<td>p-value</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>sGLT2 inhibitors</td>
<td>0 (0 – 3)</td>
<td>0.246</td>
<td></td>
</tr>
<tr>
<td>GLP-1 RA</td>
<td>0 (0 – 2)</td>
<td>0.497</td>
<td></td>
</tr>
<tr>
<td>DPP-IV</td>
<td>0 (0 – 5)</td>
<td>0.059</td>
<td></td>
</tr>
<tr>
<td>Acarbose</td>
<td>0 (0 – 2)</td>
<td>0.497</td>
<td></td>
</tr>
<tr>
<td>ACE-I</td>
<td>27 (31 – 31)</td>
<td>0.640</td>
<td></td>
</tr>
<tr>
<td>ARBs</td>
<td>34 (41 – 27)</td>
<td>0.381</td>
<td></td>
</tr>
<tr>
<td>Diuretics</td>
<td>28 (31 – 28)</td>
<td>0.757</td>
<td></td>
</tr>
<tr>
<td>β-blockers</td>
<td>34 (32 – 34)</td>
<td>0.881</td>
<td></td>
</tr>
<tr>
<td>CCA</td>
<td>22 (26 – 22)</td>
<td>0.602</td>
<td></td>
</tr>
<tr>
<td>Other antihypertensives</td>
<td>3 (9 – 3)</td>
<td>0.134</td>
<td></td>
</tr>
<tr>
<td>Statins</td>
<td>36 (54 – 36)</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>Fibrates</td>
<td>1 (2 – 1)</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Ezetimibe</td>
<td>8 (8 – 8)</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Omega 3</td>
<td>4 (3 – 4)</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Proton Pump Inhibitors</td>
<td>45 (39 – 45)</td>
<td>0.474</td>
<td></td>
</tr>
<tr>
<td>ASA</td>
<td>100 (100 – 100)</td>
<td>1.000</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: BMI= body mass index, WHR= Waist to Hip ratio, HDL= high-density lipoproteins, AST= Aspartate Aminotransferase, ALT= Alanine amino Transferase, NAFLD= non alcoholic fatty liver disease, HOMA-IR= Homeostatic Model Assessment of Insulin Resistance, eGFR= estimated glomerular filtration rate, CAD= coronary artery disease, CCA= Common carotid artery, MI= myocardial infarction, TIA= transient ischemic attack, PPAR-Y= peroxisome proliferator-activated receptor gamma, SGLT2= Sodium-glucose co-transporter-2, GLP1 RA= glucagon-like peptide 1 receptor agonist, DPP-IV= dipeptidyl peptidase IV, ACE-I= angiotensin-converting-enzyme -inhibitors, ARBs= angiotensin receptor blockers, CCA= calcium channel antagonists, ASA= acetylsalicylic acid.

Data are median (25th – 75th percentile). †Determined by Kruskal-Wallis or Mann-Whitney or Chi Square test, as appropriate.
Online Supplementary Table S2. Characteristics of patients with and without type 2 diabetes in relation to tertiles of sTXB₂ recovery slope

<table>
<thead>
<tr>
<th>Variable</th>
<th>1st tertile</th>
<th>2nd tertile</th>
<th>3rd tertile</th>
<th>P value</th>
<th>1st tertile</th>
<th>2nd tertile</th>
<th>3rd tertile</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular disease, n. (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carotid stenosis (>50%)</td>
<td>12 (36.4)</td>
<td>15 (44.1)</td>
<td>15 (45.5)</td>
<td>0.721</td>
<td>10 (30.3)</td>
<td>0 (0.0)</td>
<td>11 (33.3)</td>
<td>0.828</td>
</tr>
<tr>
<td>MI or revascularization</td>
<td>6 (18.2)</td>
<td>3 (8.8)</td>
<td>7 (21.2)</td>
<td>0.329</td>
<td>8 (24.2)</td>
<td>9 (26.5)</td>
<td>2 (6.1)</td>
<td>0.011</td>
</tr>
<tr>
<td>Stroke, TIA or revascularization</td>
<td>4 (12.1)</td>
<td>1 (2.9)</td>
<td>4 (12.1)</td>
<td>0.315</td>
<td>1 (3.0)</td>
<td>3 (8.8)</td>
<td>7 (21.2)</td>
<td>0.054</td>
</tr>
<tr>
<td>Peripheral artery disease</td>
<td>3 (9.1)</td>
<td>2 (5.9)</td>
<td>1 (3.0)</td>
<td>0.584</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>1 (3.0)</td>
<td>0.359</td>
</tr>
<tr>
<td>Diabetic microvascular disease, n. (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retinopathy</td>
<td>3 (9.1)</td>
<td>1 (2.9)</td>
<td>4 (12.1)</td>
<td>0.368</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nephropathy</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>2 (6.1)</td>
<td>0.126</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Neuropathy</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>1 (3.0)</td>
<td>0.359</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Therapy, n. (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metformin</td>
<td>21 (63.6)</td>
<td>21 (61.8)</td>
<td>21 (63.6)</td>
<td>0.983</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glinide</td>
<td>4 (12.1)</td>
<td>3 (8.8)</td>
<td>4 (12.1)</td>
<td>0.883</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PPAR-γ agonists</td>
<td>4 (12.1)</td>
<td>4 (11.8)</td>
<td>4 (12.1)</td>
<td>0.999</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sulfonylurea</td>
<td>2 (6.1)</td>
<td>0 (0.0)</td>
<td>2 (6.1)</td>
<td>0.342</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Insulin</td>
<td>1 (3.0)</td>
<td>2 (5.9)</td>
<td>3 (9.1)</td>
<td>0.584</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>sGLT2 inhibitors</td>
<td>0 (0.0)</td>
<td>1 (2.9)</td>
<td>2 (6.1)</td>
<td>0.353</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GLP-1 RA</td>
<td>0 (0.0)</td>
<td>1 (2.9)</td>
<td>1 (3.0)</td>
<td>0.605</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DPP-IV</td>
<td>2 (6.1)</td>
<td>1 (2.9)</td>
<td>2 (6.1)</td>
<td>0.795</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Acarbose</td>
<td>0 (0.0)</td>
<td>2 (5.9)</td>
<td>0 (0.0)</td>
<td>0.138</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ACE-I</td>
<td>8 (24.2)</td>
<td>9 (26.5)</td>
<td>14 (42.4)</td>
<td>0.218</td>
<td>6 (18.2)</td>
<td>12 (35.3)</td>
<td>9 (27.3)</td>
<td>0.288</td>
</tr>
<tr>
<td>ARBs</td>
<td>12 (36.4)</td>
<td>16 (47.1)</td>
<td>13 (39.4)</td>
<td>0.656</td>
<td>11 (33.3)</td>
<td>9 (26.5)</td>
<td>14 (42.4)</td>
<td>0.385</td>
</tr>
<tr>
<td>Diuretics</td>
<td>8 (24.2)</td>
<td>11 (32.4)</td>
<td>12 (36.4)</td>
<td>0.555</td>
<td>10 (30.3)</td>
<td>12 (35.3)</td>
<td>6 (18.2)</td>
<td>0.278</td>
</tr>
<tr>
<td>β-blockers</td>
<td>12 (36.4)</td>
<td>11 (32.4)</td>
<td>9 (27.3)</td>
<td>0.730</td>
<td>12 (36.4)</td>
<td>12 (35.3)</td>
<td>10 (30.3)</td>
<td>0.857</td>
</tr>
<tr>
<td>CCA</td>
<td>9 (27.3)</td>
<td>8 (23.5)</td>
<td>9 (27.3)</td>
<td>0.922</td>
<td>7 (21.2)</td>
<td>8 (23.5)</td>
<td>7 (21.2)</td>
<td>0.965</td>
</tr>
<tr>
<td>Other antihypertensives</td>
<td>2 (6.1)</td>
<td>4 (11.8)</td>
<td>3 (9.1)</td>
<td>0.717</td>
<td>0 (0.0)</td>
<td>2 (5.9)</td>
<td>1 (3.0)</td>
<td>0.369</td>
</tr>
<tr>
<td>Statins</td>
<td>16 (48.5)</td>
<td>20 (58.8)</td>
<td>18 (54.4)</td>
<td>0.695</td>
<td>17 (51.5)</td>
<td>6 (17.6)</td>
<td>13 (39.4)</td>
<td>0.014</td>
</tr>
<tr>
<td>Fibrates</td>
<td>0 (0.0)</td>
<td>2 (5.9)</td>
<td>0 (0.0)</td>
<td>0.138</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>1 (3.0)</td>
<td>0.359</td>
</tr>
<tr>
<td>Ezetimibe</td>
<td>4 (12.1)</td>
<td>2 (5.9)</td>
<td>2 (6.1)</td>
<td>0.566</td>
<td>6 (18.2)</td>
<td>1 (2.9)</td>
<td>1 (3.0)</td>
<td>0.031</td>
</tr>
<tr>
<td>Omega 3</td>
<td>1 (3.0)</td>
<td>2 (5.9)</td>
<td>0 (0.0)</td>
<td>0.373</td>
<td>3 (9.1)</td>
<td>1 (2.9)</td>
<td>0 (0.0)</td>
<td>0.157</td>
</tr>
<tr>
<td>Proton Pump Inhibitors</td>
<td>12 (36.4)</td>
<td>16 (47.1)</td>
<td>11 (33.3)</td>
<td>0.480</td>
<td>16 (48.5)</td>
<td>15 (44.1)</td>
<td>14 (42.4)</td>
<td>0.878</td>
</tr>
<tr>
<td>ASA</td>
<td>33 (100.0)</td>
<td>34 (100.0)</td>
<td>33 (100.0)</td>
<td>-</td>
<td>33 (100.0)</td>
<td>34 (100.0)</td>
<td>33 (100.0)</td>
<td>-</td>
</tr>
<tr>
<td>Aspirin treatment duration – year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0 (2.0-10.0)</td>
<td></td>
<td></td>
<td></td>
<td>0.579</td>
<td>4.0 (1.5-10.0)</td>
<td>3.0 (1.0-7.3)</td>
<td>5.0 (2.0-9.0)</td>
<td>0.464</td>
</tr>
</tbody>
</table>
Abbreviations: CAD= coronary artery disease, CCA= Common carotid artery, MI= myocardial infarction, TIA= transient ischemic attack, PPAR-Y= peroxisome proliferator-activated receptor gamma, SGLT2= Sodium-glucose co-transporter-2, GLP1 RA= glucagon-like peptide 1 receptor agonist, DPP-IV= dipeptidyl peptidase IV, ACE-I= angiotensin-converting-enzyme - inhibitors, ARBs= angiotensin receptor blockers, CCA= calcium channel antagonists, ASA= acetylsalicylic acid. Data are median (25th – 75th percentile).

† Determined by Kruskal-Wallis or \(\chi^2 \) test, as appropriate.
Online Supplementary Table S3. List of flow cytometry specificities and reagents.

<table>
<thead>
<tr>
<th>Detection</th>
<th>Fluorochrome</th>
<th>Vendor</th>
<th>Ab Clone</th>
<th>Catalog</th>
<th>Amount per Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lipophilic Cationic Dye (LCD)</td>
<td>-</td>
<td>BD Biosciences</td>
<td>-</td>
<td>626267 custom</td>
<td>0.5</td>
</tr>
<tr>
<td>Phalloidin-FITC</td>
<td>FITC</td>
<td>BD Biosciences</td>
<td>-</td>
<td>626267 custom</td>
<td>0.5</td>
</tr>
<tr>
<td>CD41a</td>
<td>PE</td>
<td>BD Biosciences</td>
<td>HIP8</td>
<td>555467</td>
<td>2.5 µl</td>
</tr>
<tr>
<td>AnnexV</td>
<td>PerCP-Cy5.5</td>
<td>BD Biosciences</td>
<td></td>
<td>561431</td>
<td>0.25 µl</td>
</tr>
</tbody>
</table>

Keys: Peridinin-Chlorophyll-protein-Cyanine 5.5 (PerCP-Cy5.5). Becton Dickison (BD) Bioscience (San Jose, CA, USA)
Online Supplementary Table S4. Significantly differential proteins at univariate statistical analysis (Volcano Plot) in pooled patients without diabetes (noT2DM). A positive value of “Difference” indicates an up-regulation in third tertile respect to first tertile, while a negative value indicates a down-regulation in the same comparison.

<table>
<thead>
<tr>
<th>Protein IDs</th>
<th>Protein names</th>
<th>Gene names</th>
<th>-LOG(P-value)</th>
<th>Difference</th>
<th>Peptides</th>
<th>Score</th>
<th>log2 iBAQ 1<sup>st</sup> tertile noT2DMC</th>
<th>log2 iBAQ 1<sup>st</sup> tertile noT2DMC</th>
<th>log2 iBAQ 1<sup>st</sup> tertile noT2DMC</th>
<th>log2 iBAQ 3<sup>rd</sup> tertile noT2DMC</th>
<th>log2 iBAQ 3<sup>rd</sup> tertile noT2DMC</th>
<th>log2 iBAQ 3<sup>rd</sup> tertile noT2DMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>P05976</td>
<td>Myosin light chain 1/3, skeletal muscle isoform</td>
<td>MYL1</td>
<td>5.332177</td>
<td>-3.54049</td>
<td>1</td>
<td>2.6151</td>
<td>14.95606</td>
<td>15.01581</td>
<td>14.9036</td>
<td>0</td>
<td>11.4417</td>
<td>11.3943</td>
</tr>
<tr>
<td>P62328</td>
<td>Thymosin beta-4</td>
<td>TMSB4X</td>
<td>2.448961</td>
<td>-0.98798</td>
<td>5</td>
<td>21.013</td>
<td>17.6404</td>
<td>17.49748</td>
<td>17.97146</td>
<td>16.63254</td>
<td>16.87183</td>
<td>16.64104</td>
</tr>
<tr>
<td>P11216</td>
<td>Glycogen phosphorylase, brain form</td>
<td>PYGB</td>
<td>1.596722</td>
<td>-0.9733</td>
<td>10</td>
<td>17.113</td>
<td>12.34452</td>
<td>12.59038</td>
<td>12.37278</td>
<td>11.74239</td>
<td>10.9257</td>
<td>11.71969</td>
</tr>
<tr>
<td>P29350</td>
<td>Tyrosine-protein phosphatase non-receptor type 6</td>
<td>PTPN6</td>
<td>2.641331</td>
<td>-0.90101</td>
<td>3</td>
<td>25.222</td>
<td>11.43327</td>
<td>11.48553</td>
<td>11.40243</td>
<td>10.69427</td>
<td>10.28575</td>
<td>10.63816</td>
</tr>
<tr>
<td>P02042</td>
<td>Hemoglobin subunit delta</td>
<td>HBD</td>
<td>4.641929</td>
<td>-0.8987</td>
<td>12</td>
<td>31.915</td>
<td>15.97123</td>
<td>16.09809</td>
<td>16.00904</td>
<td>15.14534</td>
<td>15.13495</td>
<td>15.10198</td>
</tr>
<tr>
<td>Q13576</td>
<td>Ras GTPase-activating-like protein IQGAP2</td>
<td>IQGAP2</td>
<td>2.029018</td>
<td>-0.89803</td>
<td>4</td>
<td>8.8637</td>
<td>10.49725</td>
<td>10.50661</td>
<td>10.62388</td>
<td>9.438646</td>
<td>9.477212</td>
<td>10.01778</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Description</td>
<td>Accession</td>
<td>Description</td>
<td>Accession</td>
<td>Description</td>
<td>Accession</td>
<td>Description</td>
<td>Accession</td>
<td>Description</td>
<td>Accession</td>
<td>Description</td>
<td>Accession</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------------</td>
<td>-----------</td>
<td>--------------------------------------</td>
<td>-----------</td>
<td>--------------------------------------</td>
<td>-----------</td>
<td>--------------------------------------</td>
<td>-----------</td>
<td>--------------------------------------</td>
<td>-----------</td>
<td>--------------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>P35579</td>
<td>Myosin-9</td>
<td>P35579</td>
<td></td>
<td>MYH9</td>
<td>2.044834 -0.52842 130 323.31 18.54762 18.53727 18.62724 18.15837 17.82706 18.14146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P02679</td>
<td>Fibrinogen gamma chain</td>
<td>P02679</td>
<td></td>
<td>FGG</td>
<td>1.457894 -0.42144 20 323.31 18.73218 18.62607 18.52187 18.0146 18.17524 18.42595</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P05106</td>
<td>Integrin beta-3</td>
<td>P05106</td>
<td></td>
<td>ITGB3</td>
<td>1.846059 -0.30173 29 323.31 17.77462 17.72521 17.6447 17.37653 17.32869 17.53412</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q7Z406</td>
<td>Myosin-14</td>
<td>Q7Z406</td>
<td></td>
<td>MYH14</td>
<td>1.613068 -0.29379 11 3.7569 12.92928 0 12.99435 12.76754 12.63411 12.60242</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P02656</td>
<td>Apolipoprotein C-III</td>
<td>P02656</td>
<td></td>
<td>APOC3</td>
<td>1.882155 0.352379 1 14.545 12.80306 12.70016 12.64908 12.95456 13.06056 13.19431</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q71U36</td>
<td>Tubulin alpha-1A chain</td>
<td>Q71U36</td>
<td></td>
<td>TUBA1A</td>
<td>1.674371 0.378992 17 3.33 12.98865 12.87233 12.77748 13.37041 13.30834 13.09668</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P06753</td>
<td>Tropomyosin alpha-3 chain</td>
<td>P06753</td>
<td></td>
<td>TPM3</td>
<td>1.475808 0.384619 12 59.094 17.333 17.19806 17.42431 17.65536 17.58461 17.5557</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P06733</td>
<td>Alpha-enolase</td>
<td>P06733</td>
<td></td>
<td>ENO1</td>
<td>1.57891 0.430053 16 228.3 16.76811 16.55817 16.38956 17.0268 16.88691 17.09228</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P04406</td>
<td>Glyceraldehyde-3-phosphate dehydrogenase</td>
<td>P04406</td>
<td></td>
<td>GAPDH</td>
<td>1.894752 0.490143 13 317.94 17.77514 17.63616 17.91992 18.33704 18.10835 18.35625</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O15511</td>
<td>Actin-related protein 2/3 complex subunit 5</td>
<td>O15511</td>
<td></td>
<td>ARPC5</td>
<td>1.394136 0.578421 4 14.082 14.54702 15.14669 14.88741 15.53992 15.5073 15.26916</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O00299</td>
<td>Chloride intracellular channel protein 1</td>
<td>O00299</td>
<td></td>
<td>CLIC1</td>
<td>3.224727 0.58839 10 79.555 16.41005 16.51297 16.32745 16.95651 17.04655 17.01258</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P13716</td>
<td>Delta-aminolevulinic acid dehydratase</td>
<td>P13716</td>
<td></td>
<td>ALAD</td>
<td>2.98044 0.75905 2 6.0967 0 11.66787 11.67225 0 12.45358 12.40464</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Description</td>
<td>Symbol</td>
<td>E-value</td>
<td>-log10(p-value)</td>
<td>FDR-corrected p-value</td>
<td>q-value</td>
<td>Median</td>
<td>IQR</td>
<td>Mean</td>
<td>95% CI Lower</td>
<td>95% CI Upper</td>
<td>SD</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>--------</td>
<td>---------</td>
<td>-----------------</td>
<td>----------------------</td>
<td>---------</td>
<td>--------</td>
<td>-----------</td>
<td>----------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------</td>
</tr>
<tr>
<td>P60174</td>
<td>Triosephosphate isomerase</td>
<td>TPI1</td>
<td>2.451393</td>
<td>0.806739</td>
<td>11</td>
<td>37.299</td>
<td>14.7882</td>
<td>15.0023</td>
<td>15.7189</td>
<td>15.5734</td>
<td>15.5177</td>
<td>0.8067</td>
</tr>
<tr>
<td></td>
<td>Peptidyl-prolyl cis-trans</td>
<td>P23284</td>
<td>2.130531</td>
<td>0.895937</td>
<td>8</td>
<td>21.934</td>
<td>15.3890</td>
<td>14.9917</td>
<td>15.5540</td>
<td>16.1215</td>
<td>16.3316</td>
<td>0.8959</td>
</tr>
<tr>
<td>Q99832</td>
<td>T-complex protein 1 subunit eta</td>
<td>CCT7</td>
<td>1.242115</td>
<td>0.948009</td>
<td>5</td>
<td>7.8265</td>
<td>10.9051</td>
<td>0.0051</td>
<td>10.9576</td>
<td>0.7143</td>
<td>11.6372</td>
<td>0.9480</td>
</tr>
<tr>
<td>Q15084</td>
<td>Protein disulfide-isomerase A6</td>
<td>PDIA6</td>
<td>2.629273</td>
<td>0.951978</td>
<td>7</td>
<td>41.456</td>
<td>14.7742</td>
<td>14.4316</td>
<td>14.6775</td>
<td>15.3923</td>
<td>15.6682</td>
<td>0.9519</td>
</tr>
<tr>
<td>P11021</td>
<td>78 kDa glucose-regulated protein</td>
<td>HSPA5</td>
<td>1.553379</td>
<td>0.99763</td>
<td>22</td>
<td>126.49</td>
<td>14.7150</td>
<td>15.6066</td>
<td>14.9196</td>
<td>16.3574</td>
<td>15.8675</td>
<td>0.9976</td>
</tr>
<tr>
<td>Q9H0U4</td>
<td>Ras-related protein Rab-1B</td>
<td>RAB1B</td>
<td>1.426842</td>
<td>1.140889</td>
<td>7</td>
<td>36.248</td>
<td>15.7072</td>
<td>14.7205</td>
<td>14.6625</td>
<td>16.4641</td>
<td>15.9462</td>
<td>1.1409</td>
</tr>
<tr>
<td>P13489</td>
<td>Ribonuclease inhibitor</td>
<td>RNH1</td>
<td>1.253269</td>
<td>1.229427</td>
<td>4</td>
<td>11.132</td>
<td>10.1104</td>
<td>9.9316</td>
<td>10.9392</td>
<td>11.4847</td>
<td>11.6283</td>
<td>1.2294</td>
</tr>
</tbody>
</table>

Nucleosome assembly protein 1-

<table>
<thead>
<tr>
<th>Accession</th>
<th>Description</th>
<th>Symbol</th>
<th>E-value</th>
<th>-log10(p-value)</th>
<th>FDR-corrected p-value</th>
<th>q-value</th>
<th>Median</th>
<th>IQR</th>
<th>Mean</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>P55209</td>
<td>like 1</td>
<td>NAPIL1</td>
<td>1.260657</td>
<td>1.288467</td>
<td>2</td>
<td>13.287</td>
<td>13.7459</td>
<td>13.8336</td>
<td>15.2256</td>
<td>15.5894</td>
<td>15.5389</td>
<td>1.2885</td>
</tr>
<tr>
<td>O60610</td>
<td>Protein diaphanous homolog 1</td>
<td>DJAPH1</td>
<td>1.277175</td>
<td>2.734471</td>
<td>13</td>
<td>22.023</td>
<td>8.6064</td>
<td>9.9234</td>
<td>10.9644</td>
<td>12.9083</td>
<td>12.1255</td>
<td>2.7345</td>
</tr>
</tbody>
</table>

Superoxide dismutase [Mn],

<table>
<thead>
<tr>
<th>Accession</th>
<th>Description</th>
<th>Symbol</th>
<th>E-value</th>
<th>-log10(p-value)</th>
<th>FDR-corrected p-value</th>
<th>q-value</th>
<th>Median</th>
<th>IQR</th>
<th>Mean</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>SD</th>
</tr>
</thead>
</table>
Online Supplementary Table S5. Significantly differential proteins at univariate statistical analysis (Volcano Plot) in pooled patients with diabetes (T2DM). A positive value of “Difference” indicates an up-regulation in third tertile respect to first tertile, while a negative value indicates a down-regulation in the same comparison.

<table>
<thead>
<tr>
<th>Protein IDs</th>
<th>Protein names</th>
<th>Gene names</th>
<th>-LOG(P-value)</th>
<th>Difference</th>
<th>Peptides</th>
<th>Score</th>
<th>log2 iBAQ 3rd tertile T2DM 01</th>
<th>log2 iBAQ 3rd tertile T2DM 02</th>
<th>log2 iBAQ 3rd tertile T2DM 03</th>
<th>log2 iBAQ 1st tertile T2DM 01</th>
<th>log2 iBAQ 1st tertile T2DM 02</th>
<th>log2 iBAQ 1st tertile T2DM 03</th>
<th>log2 iBAQ 1st tertile T2DM 03</th>
</tr>
</thead>
<tbody>
<tr>
<td>P01009</td>
<td>Alpha-1-antitrypsin SERPINA1</td>
<td>SERPINA1</td>
<td>1.574752</td>
<td>-0.94506</td>
<td>2</td>
<td>31.074</td>
<td>11.17636</td>
<td>11.09764</td>
<td>10.7151</td>
<td>11.54868</td>
<td>12.36506</td>
<td>11.91053</td>
<td></td>
</tr>
<tr>
<td>P01877</td>
<td>Ig alpha-2 chain C region IGHA2</td>
<td>IGHA2</td>
<td>2.090789</td>
<td>-0.65005</td>
<td>1</td>
<td>6.7504</td>
<td>10.4292</td>
<td>10.28019</td>
<td>10.62571</td>
<td>11.19722</td>
<td>10.92072</td>
<td>11.16729</td>
<td></td>
</tr>
<tr>
<td>Q71U36</td>
<td>Tubulin alpha-1A chain TUBA1A</td>
<td>TUBA1A</td>
<td>1.374359</td>
<td>-0.60008</td>
<td>16</td>
<td>9.8418</td>
<td>11.23829</td>
<td>10.81306</td>
<td>10.70977</td>
<td>11.7608</td>
<td>11.45389</td>
<td>11.34668</td>
<td></td>
</tr>
<tr>
<td>A0A087WV48</td>
<td>Peptidyl-prolyl cis-trans isomerase FKBP1A</td>
<td>FKBP1A</td>
<td>1.582264</td>
<td>0.314351</td>
<td>1</td>
<td>7.7167</td>
<td>13.10617</td>
<td>13.36318</td>
<td>13.38073</td>
<td>12.96842</td>
<td>12.93257</td>
<td>13.00605</td>
<td></td>
</tr>
</tbody>
</table>

26
<p>| P11142 | Heat shock cognate 71 kDa protein | HSPA8 | 1.890217 | 0.39384 | 17 | 128.76 | 15.40171 | 15.65749 | 15.52616 | 15.02484 | 15.19568 | 15.18332 |
| P09486 | SPARC | SPARC | 1.325489 | 0.39593 | 4 | 30.946 | 15.64329 | 15.3549 | 15.20201 | 15.09959 | 14.99643 | 14.91639 |
| P06703 | Protein S100-A6 | S100A6 | 1.478966 | 0.402231 | 1 | 6.0352 | 13.07494 | 15.64329 | 15.3549 | 15.20201 | 15.09959 | 14.99643 |
| P14770 | Platelet glycoprotein IX | GP9 | 1.647101 | 0.413659 | 4 | 29.441 | 15.80735 | 15.66069 | 15.77316 | 15.17094 | 15.53162 | 15.29767 |
| P19105 | Myosin regulatory light chain 12A | MYL12A | 1.475887 | 0.425207 | 8 | 84.722 | 17.65425 | 17.72507 | 17.58152 | 17.34906 | 16.97455 | 17.36162 |
| P61224 | Ras-related protein Rap-1b | RAP1B | 1.345179 | 0.486839 | 10 | 88.933 | 17.68414 | 17.37101 | 17.82637 | 17.34577 | 17.03596 | 17.03928 |
| P30101 | Protein disulfide-isomerase A3 | PDIA3 | 1.477568 | 0.510464 | 2 | 7.227 | 15.56873 | 15.67777 | 15.5597 | 14.98686 | 14.93111 | 15.24956 |
| P06753 | Tropomyosin alpha-3 chain | TPM3 | 1.351964 | 0.510431 | 11 | 63.08 | 15.52506 | 15.46531 | 15.33696 | 15.08986 | 15.10906 | 14.59712 |
| Q14766 | Latent-transforming growth factor beta-binding protein 1 | LTB1P1 | 1.924697 | 0.51086 | 12 | 96.839 | 12.99327 | 12.7426 | 12.85722 | 12.48902 | 12.39218 | 12.17932 |
| P01834 | Ig kappa chain C region | IGKC | 2.657308 | 0.559691 | 1 | 7.796 | 13.25441 | 13.36932 | 13.51015 | 12.75776 | 12.84015 | 12.85689 |
| Q9UBW5 | Bridging integrator 2 | BIN2 | 1.300584 | 0.563637 | 8 | 51.553 | 13.58848 | 14.01498 | 13.77982 | 13.44061 | 13.33818 | 12.91358 |
| P10124 | Sergylicin | SRGN | 2.25759 | 0.569873 | 3 | 20.092 | 15.6434 | 15.67777 | 15.5597 | 14.98686 | 14.93111 | 15.24956 |
| Q9NZN3 | EH domain-containing protein 3 | EHD3 | 1.691269 | 0.683522 | 10 | 73.056 | 14.34935 | 13.89945 | 13.85565 | 13.52906 | 13.21193 | 13.31288 |
| P10809 | 60 kDa heat shock protein, mitochondrial | HSPD1 | 1.801825 | 0.692291 | 4 | 27.759 | 12.35508 | 11.79576 | 12.12069 | 11.51062 | 11.36008 | 11.32396 |
| P09493 | Tropomyosin alpha-1 chain | TPM1 | 2.366772 | 0.721876 | 7 | 6.4116 | 11.78324 | 11.6475 | 11.86213 | 11.14275 | 11.15526 | 10.82925 |</p>
<table>
<thead>
<tr>
<th>P06744</th>
<th>Glucose-6-phosphate isomerase</th>
<th>GPI</th>
<th>1.218757</th>
<th>0.781909</th>
<th>2</th>
<th>12.827</th>
<th>10.86751</th>
<th>11.75121</th>
<th>11.7309</th>
<th>10.8157</th>
<th>10.6359</th>
<th>10.55229</th>
</tr>
</thead>
<tbody>
<tr>
<td>P09972</td>
<td>Fructose-bisphosphate aldolase C</td>
<td>ALDOC</td>
<td>1.194812</td>
<td>1.396106</td>
<td>3</td>
<td>8.3192</td>
<td>13.33762</td>
<td>0</td>
<td>12.77604</td>
<td>11.36271</td>
<td>12.33829</td>
<td>11.28118</td>
</tr>
<tr>
<td>Q01813</td>
<td>ATP-dependent 6-</td>
<td>PFKP</td>
<td>1.737466</td>
<td>1.69225</td>
<td>3</td>
<td>17.686</td>
<td>11.95815</td>
<td>11.64273</td>
<td>0</td>
<td>10.596</td>
<td>10.03974</td>
<td>9.688828</td>
</tr>
</tbody>
</table>

phosphofructokinase, platelet type
Online Supplementary Table S6. Characteristics of patients with and without type 2 diabetes analyzed for MK and proplatelet studies in relation to tertiles of sTXB2 recovery slope.

<table>
<thead>
<tr>
<th>N.</th>
<th>noT2DM 1<sup>st</sup> tertile</th>
<th>noT2DM 3<sup>rd</sup> tertile</th>
<th>P value</th>
<th>T2DM 1<sup>st</sup> tertile</th>
<th>T2DM 3<sup>rd</sup> tertile</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age – years</td>
<td>58.0 (44.3-73.3)</td>
<td>66.5 (53.8-68.0)</td>
<td>0.521</td>
<td>67.0 (60.8-73.3)</td>
<td>68.0 (60.5-70.0)</td>
<td>0.902</td>
</tr>
<tr>
<td>Male gender, n. (%)</td>
<td>3 (75)</td>
<td>4 (66)</td>
<td>1.000</td>
<td>2 (50)</td>
<td>4 (20)</td>
<td>0.524</td>
</tr>
<tr>
<td>Weight – Kg</td>
<td>72.0 (51.0-98.3)</td>
<td>79.5 (68.8-107.0)</td>
<td>0.522</td>
<td>82.5 (74.3-93.8)</td>
<td>100.0 (84.5-101.5)</td>
<td>0.110</td>
</tr>
<tr>
<td>BMI - Kg/m<sup>2</sup></td>
<td>25.4 (20.3-33.4)</td>
<td>27.0 (25.6-33.9)</td>
<td>0.522</td>
<td>30.2 (26.8-37.0)</td>
<td>32.2 (30.9-34.8)</td>
<td>0.462</td>
</tr>
<tr>
<td>Waist circumference – cm</td>
<td>96.5 (79.3-116.8)</td>
<td>103.5 (98.0-117.3)</td>
<td>0.240</td>
<td>103.5 (90.8-121.5)</td>
<td>107.0 (106.5-116.0)</td>
<td>0.621</td>
</tr>
<tr>
<td>WHR</td>
<td>0.97 (0.86-1.07)</td>
<td>0.99 (0.96-1.01)</td>
<td>0.667</td>
<td>0.92 (0.88-0.98)</td>
<td>0.97 (0.95-1.02)</td>
<td>0.110</td>
</tr>
<tr>
<td>Obesity, n. (%)</td>
<td>1 (25)</td>
<td>2 (33)</td>
<td>1.000</td>
<td>2 (50)</td>
<td>5 (100)</td>
<td>0.167</td>
</tr>
<tr>
<td>Systolic arterial pressure – mmHg</td>
<td>128.5 (113.8-168.0)</td>
<td>155.0 (140.5-167.3)</td>
<td>0.201</td>
<td>143.0 (135.5-152.8)</td>
<td>148.0 (137.0-170.0)</td>
<td>0.461</td>
</tr>
<tr>
<td>Diastolic arterial pressure – mmHg</td>
<td>78.0 (63.0-90.0)</td>
<td>88.5 (84.3-94.0)</td>
<td>0.281</td>
<td>75.5 (70.8-79.5)</td>
<td>79.0 (74.5-83.5)</td>
<td>0.327</td>
</tr>
<tr>
<td>Hypertension, n. (%)</td>
<td>2 (50)</td>
<td>6 (100)</td>
<td>.133</td>
<td>3 (75)</td>
<td>4 (20)</td>
<td>1.000</td>
</tr>
<tr>
<td>Glycated hemoglobin - mmol/mol</td>
<td>39 (36-44)</td>
<td>39 (33-45)</td>
<td>0.747</td>
<td>53 (41-72)</td>
<td>56 (50-64)</td>
<td>0.461</td>
</tr>
<tr>
<td>Glycated hemoglobin - %</td>
<td>5.7 (5.4-6.2)</td>
<td>5.7 (5.2-6.3)</td>
<td>0.747</td>
<td>7.0 (5.9-8.7)</td>
<td>7.3 (6.7-8.0)</td>
<td>0.461</td>
</tr>
<tr>
<td>Dyslipidemia, n. (%)</td>
<td>2 (50)</td>
<td>3 (50)</td>
<td>1.000</td>
<td>4 (100)</td>
<td>4 (20)</td>
<td>1.000</td>
</tr>
<tr>
<td>AST - U/L</td>
<td>30.0 (21.0-42.8)</td>
<td>27.0 (21.3-31.8)</td>
<td>0.669</td>
<td>20.5 (16.8-25.8)</td>
<td>25.0 (20.0-26.0)</td>
<td>0.537</td>
</tr>
<tr>
<td>ALT - U/L</td>
<td>43.0 (30.5-54.0)</td>
<td>31.0 (27.0-38.3)</td>
<td>0.240</td>
<td>28.0 (19.8-37.8)</td>
<td>32.0 (26.5-41.5)</td>
<td>0.268</td>
</tr>
<tr>
<td>Total Bilirubin – umol/L</td>
<td>0.65 (0.50-0.88)</td>
<td>0.95 (0.55-1.20)</td>
<td>0.333</td>
<td>0.50 (0.43-0.88)</td>
<td>0.60 (0.45-0.60)</td>
<td>0.702</td>
</tr>
<tr>
<td>NAFLD, n. (%)</td>
<td>4 (100)</td>
<td>3 (50)</td>
<td>.444</td>
<td>3 (75)</td>
<td>5 (100)</td>
<td>.126</td>
</tr>
<tr>
<td>hs-C-reactive protein – nmol/L</td>
<td>0.27 (0.07-0.60)</td>
<td>0.23 (0.06-0.40)</td>
<td>0.670</td>
<td>0.08 (0.05-0.30)</td>
<td>0.23 (0.09-0.29)</td>
<td>0.389</td>
</tr>
<tr>
<td>Red Blood Cell count, x10<sup>12</sup>/L</td>
<td>4.8 (4.5-5.0)</td>
<td>5.4 (4.7-5.5)</td>
<td>0.219</td>
<td>4.6 (4.5-4.7)</td>
<td>4.7 (4.3-4.9)</td>
<td>0.624</td>
</tr>
<tr>
<td>Hemoglobin – g/dL</td>
<td>14 (14-15)</td>
<td>15 (14-16)</td>
<td>0.806</td>
<td>13 (13-14)</td>
<td>14 (13-15)</td>
<td>0.142</td>
</tr>
<tr>
<td>Hematocrit – %</td>
<td>43 (42-45)</td>
<td>45 (42-48)</td>
<td>0.221</td>
<td>39 (38-41)</td>
<td>41 (40-42)</td>
<td>0.142</td>
</tr>
<tr>
<td>Red cell Distribution Width – %</td>
<td>13.7 (12.5-14.3)</td>
<td>14.3 (12.9-14.8)</td>
<td>0.387</td>
<td>14.1 (13.7-14.4)</td>
<td>13.2 (13.2-13.6)</td>
<td>0.026</td>
</tr>
<tr>
<td>Platelet count – 10<sup>9</sup>/L</td>
<td>201 (138-348)</td>
<td>224 (213-229)</td>
<td>1.000</td>
<td>230 (169-241)</td>
<td>228 (194-259)</td>
<td>1.000</td>
</tr>
<tr>
<td>Platelet Distribution Width – fL</td>
<td>13.6 (10.8-16.8)</td>
<td>14.7 (13.5-15.0)</td>
<td>0.461</td>
<td>12.5 (11.6-15.2)</td>
<td>15.3 (12.9-16.1)</td>
<td>0.221</td>
</tr>
<tr>
<td>Mean Platelet Volume – fL</td>
<td>11.6 (9.7-12.7)</td>
<td>11.7 (11.1-11.8)</td>
<td>0.806</td>
<td>10.7 (10.1-11.9)</td>
<td>11.7 (10.9-16.6)</td>
<td>0.176</td>
</tr>
<tr>
<td>White Blood Cell count – 10<sup>9</sup>/L</td>
<td>6.44 (5.08-8.81)</td>
<td>7.02 (5.27-9.58)</td>
<td>0.624</td>
<td>6.36 (4.68-9.26)</td>
<td>6.22 (5.52-6.76)</td>
<td>0.806</td>
</tr>
<tr>
<td>Fasting plasma glucose – mmol/L</td>
<td>86.5 (77.8-100.5)</td>
<td>90.5 (86.8-104.3)</td>
<td>0.454</td>
<td>130.0 (96.0-150.5)</td>
<td>130.0 (110.5-147.5)</td>
<td>0.806</td>
</tr>
<tr>
<td>Fasting plasma Insulin – pmol/L</td>
<td>10.2 (7.27-10.37)</td>
<td>10.2 (7.67-20.57)</td>
<td>0.67</td>
<td>6.4 (4.5-12.57)</td>
<td>14.2 (11.8-23.85)</td>
<td>0.086</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>2.21 (1.4-3.33)</td>
<td>2.45 (1.69-4.97)</td>
<td>0.67</td>
<td>2.32 (1.43-2.99)</td>
<td>4.8 (3.81-7.1)</td>
<td>0.014</td>
</tr>
<tr>
<td>Serum Creatinine – umol/L</td>
<td>61.6 (48.4-88.0)</td>
<td>74.8 (66.0-96.8)</td>
<td>0.190</td>
<td>83.6 (52.8-83.6)</td>
<td>79.2 (55.4-83.6)</td>
<td>0.537</td>
</tr>
<tr>
<td>eGFR – ml/min</td>
<td>109.5 (73.5-126.1)</td>
<td>90.8 (74.4-102.0)</td>
<td>0.394</td>
<td>91.0 (79.8-97.8)</td>
<td>87.0 (82.4-104.0)</td>
<td>0.806</td>
</tr>
<tr>
<td>Uric Acid – umol/L</td>
<td>285.5 (279.6-297.4)</td>
<td>333.1 (237.9-535.3)</td>
<td>0.453</td>
<td>321.1 (243.9-362.8)</td>
<td>327.1 (303.3-440.1)</td>
<td>0.624</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>-------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Cardiovascular disease, n. (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 (50)</td>
<td>2 (33)</td>
<td>1.000</td>
<td>2 (50)</td>
<td>4 (20)</td>
<td>0.524</td>
<td></td>
</tr>
<tr>
<td>Stable CAD</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1 (25)</td>
<td>1 (20)</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Carotid stenosis (>50%)</td>
<td>0 (0)</td>
<td>2 (33)</td>
<td>0.467</td>
<td>0 (0)</td>
<td>2 (40)</td>
<td>0.444</td>
</tr>
<tr>
<td>MI or revascularization</td>
<td>1 (25)</td>
<td>0 (0)</td>
<td>0.400</td>
<td>1 (25)</td>
<td>1 (20)</td>
<td>1.000</td>
</tr>
<tr>
<td>Stroke, TIA or revascularization</td>
<td>1 (25)</td>
<td>1 (16)</td>
<td>1.000</td>
<td>1 (25)</td>
<td>1 (20)</td>
<td>1.000</td>
</tr>
<tr>
<td>Peripheral artery disease</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1 (25)</td>
<td>0 (0)</td>
<td>0.444</td>
<td></td>
</tr>
<tr>
<td>Therapy, n. (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metformin</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>-</td>
<td>4 (100)</td>
<td>3 (60)</td>
<td>0.444</td>
</tr>
<tr>
<td>Glinide</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>-</td>
<td>1 (25)</td>
<td>1 (20)</td>
<td>1.000</td>
</tr>
<tr>
<td>PPAR-γ agonists</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>-</td>
<td>1 (25)</td>
<td>1 (20)</td>
<td>1.000</td>
</tr>
<tr>
<td>Sulfonylurea</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>-</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>-</td>
</tr>
<tr>
<td>Insulin</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>-</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>-</td>
</tr>
<tr>
<td>sGLT2 inhibitors</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>-</td>
<td>0 (0)</td>
<td>1 (20)</td>
<td>1.000</td>
</tr>
<tr>
<td>GLP-1 RA</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>-</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>-</td>
</tr>
<tr>
<td>DPP-IV</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>-</td>
<td>1 (25)</td>
<td>0 (0)</td>
<td>0.444</td>
</tr>
<tr>
<td>Acarbose</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>-</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>-</td>
</tr>
<tr>
<td>ACE-I</td>
<td>1 (25)</td>
<td>1 (16)</td>
<td>1.000</td>
<td>0 (0)</td>
<td>1 (20)</td>
<td>-</td>
</tr>
<tr>
<td>ARBs</td>
<td>1 (25)</td>
<td>2 (33)</td>
<td>1.000</td>
<td>1 (25)</td>
<td>2 (40)</td>
<td>1.000</td>
</tr>
<tr>
<td>Diuretics</td>
<td>0 (0)</td>
<td>1 (16)</td>
<td>1.000</td>
<td>0 (0)</td>
<td>2 (40)</td>
<td>0.444</td>
</tr>
<tr>
<td>β-blockers</td>
<td>1 (25)</td>
<td>5</td>
<td>0.190</td>
<td>2 (50)</td>
<td>2 (40)</td>
<td>1.000</td>
</tr>
<tr>
<td>CCA</td>
<td>1 (25)</td>
<td>1 (16)</td>
<td>1.000</td>
<td>2 (50)</td>
<td>1 (20)</td>
<td>0.524</td>
</tr>
<tr>
<td>Other antihypertensives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Statins</td>
<td>2 (50)</td>
<td>3 (50)</td>
<td>1.000</td>
<td>3 (75)</td>
<td>1 (20)</td>
<td>0.206</td>
</tr>
<tr>
<td>Fibricates</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>-</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>-</td>
</tr>
<tr>
<td>Ezetimibe</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>-</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>-</td>
</tr>
<tr>
<td>Omega 3</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>-</td>
<td>1 (25)</td>
<td>0 (0)</td>
<td>0.444</td>
</tr>
<tr>
<td>Proton Pump Inhibitors</td>
<td>3 (75)</td>
<td>3 (50)</td>
<td>0.571</td>
<td>1 (25)</td>
<td>1 (20)</td>
<td>1.000</td>
</tr>
<tr>
<td>ASA</td>
<td>4 (100)</td>
<td>6 (100)</td>
<td>1.000</td>
<td>4 (100)</td>
<td>5 (100)</td>
<td>-</td>
</tr>
<tr>
<td>sTXB2 T0</td>
<td>3.20 (1.17-5.56)</td>
<td>12.74 (8.31-18.06)</td>
<td>0.055</td>
<td>1.42 (1.05-2.50)</td>
<td>4.88 (3.76-12.77)</td>
<td>0.014</td>
</tr>
<tr>
<td>sTXB2 T10</td>
<td>1.57 (0.35-2.47)</td>
<td>3.53 (1.56-5.16)</td>
<td>0.088</td>
<td>0.88 (0.47-1.52)</td>
<td>1.99 (1.93-5.48)</td>
<td>0.014</td>
</tr>
<tr>
<td>sTXB2 T24</td>
<td>2.71 (0.95-3.49)</td>
<td>7.72 (5.37-11.46)</td>
<td>0.011</td>
<td>1.51 (1.26-2.58)</td>
<td>5.83 (5.12-13.91)</td>
<td>0.014</td>
</tr>
<tr>
<td>Slope_sTXB2 ngmL⁻¹h⁻¹</td>
<td>0.07 (0.03-0.09)</td>
<td>0.270.25-0.51)</td>
<td>0.011</td>
<td>0.05 (0.04-0.08)</td>
<td>0.28 (0.22-0.60)</td>
<td>0.014</td>
</tr>
</tbody>
</table>
Reference range of “normal values”: AST, 5-34 U/L; ALT, 0-55 U/L; hs-C-reactive protein, 0-47.62 nmol/L; Platelet count, 150-450 x109/L; Total cholesterol, 0.0-5.17 mmol/L; HDL cholesterol, 1.03-1.55 mmol/L; Triglycerides, 0-1.69 mmol/L; Fasting plasma glucose, 4.61-6.11 mmol/L; Serum Creatinine, 50.2-97.7 umol/L; Fasting plasma glucose, 3.9-5.5 mmol/L; eGFR, >60 mL/min.

Abbreviations: BMI= body mass index, WHR= Waist to Hip ratio, HDL= high-density lipoproteins, AST= Aspartate Aminotransferase, ALT= Alanine amino Transferase, NAFLD= non alcoholic fatty liver disease, HOMA-IR= Homeostatic Model Assessment of Insulin Resistance, eGFR= estimated glomerular filtration rate, CAD= coronary artery disease, CCA= Common carotid artery, MI= myocardial infarction, TIA= transient ischemic attack, PPAR-Y= peroxisome proliferator-activated receptor gamma, SGLT2= Sodium-glucose co-transporter-2, GLP1 RA= glucagon-like peptide 1 receptor agonist, DPP-IV= dipeptidyl peptidase IV, ACE-I= angiotensin-converting-enzyme -inhibitors, ARBs= angiotensin receptor blockers, CCA= calcium channel antagonists, ASA= acetylsalicylic acid.

Data are median (25th – 75th percentile). †Determined by Kruskal-Wallis or Mann-Whitney or Chi Square test, as appropriate.
Online Supplementary Table S7. Correlations between sTXB\textsubscript{2} recovery slope and clinical variables in patients with and without type 2 diabetes mellitus.

<table>
<thead>
<tr>
<th></th>
<th>T2DM</th>
<th>noT2DM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Age</td>
<td>BMI</td>
</tr>
<tr>
<td>sTXB\textsubscript{2} slope</td>
<td>rho=-0.215</td>
<td>rho=0.217</td>
</tr>
<tr>
<td></td>
<td>p=0.030</td>
<td>p=0.027</td>
</tr>
<tr>
<td>Weight</td>
<td>rho=0.217</td>
<td>rho=0.267</td>
</tr>
<tr>
<td>sTXB\textsubscript{2} slope</td>
<td>p=0.029</td>
<td>p=0.007</td>
</tr>
</tbody>
</table>

Abbreviations: BMI=body mass index; WC=waist circumference; eGFR=estimated glomerular filtration rate; WHR=waist-to-hip ratio; DAP=diastolic arterial pressure.

Spearman correlation coefficient and p-value are reported.