COVID-19 vaccine-induced adverse events predict immunogenicity among recipients of allogeneic haematopoietic stem cell transplantation

by Hanna Grauers Wiktorin, Sigrun Einarsdottir, Andreas Törnell, Mohammad Arabpour, Nuttida Issdisai, Jesper Waldenström, Johan Ringlander, Magnus Lindh, Martin Lagging, Kristoffer Hellstrand, and Anna Martner

Received: February 23, 2022.
Accepted: June 15, 2022.

Citation: Hanna Grauers Wiktorin, Sigrun Einarsdottir, Andreas Törnell, Mohammad Arabpour, Nuttida Issdisai, Jesper Waldenström, Johan Ringlander, Magnus Lindh, Martin Lagging, Kristoffer Hellstrand, and Anna Martner. COVID-19 vaccine-induced adverse events predict immunogenicity among recipients of allogeneic haematopoietic stem cell transplantation.

Publisher's Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
COVID-19 vaccine-induced adverse events predict immunogenicity among recipients of allogeneic haematopoietic stem cell transplantation

Hanna Grauers Wiktorin¹, Sigrun Einarsdottir², Andreas Törnell¹, Mohammad Arabpour¹,³, Nuttida Issdisai¹, Jesper Waldenström⁴,⁵, Johan Ringlander³,⁴, Magnus Lindh³,⁴, Martin Lagging³,⁴, Kristoffer Hellstrand¹,³, Anna Martner¹*

¹TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, ²Department of Hematology and Coagulation, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, ³Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Microbiology, Gothenburg, Sweden, ⁴Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, ⁵Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden

*Correspondence to: Anna Martner, PhD, Sahlgrenska Center for Cancer Research, Dept. of Infectious Diseases, Medicinaregatan 1F, 41390 Gothenburg, Sweden; Telephone: +46736517644, E-mail: anna.martner@gu.se

Running Title: Adverse events predict COVID-19 vaccine immunity

Word count: 1234, 2 tables, 1 figure

Competing Interests: The authors have nothing to disclose.

Clinical trial registration: EudraCT 2021-000349-42
Author contributions: HGW conducted experiments, analysed data, made figures and wrote the manuscript, SE designed and conducted the clinical trial, AT, MA and NI conducted experiments, JW analysed data, JR conducted experiments and analysed data, MLi designed the clinical trial, MLa and KH designed the clinical trial and wrote the manuscript, AM designed the clinical trial, conducted experiments, analysed data and wrote the manuscript. All authors have edited and approved the manuscript.

Data sharing statement: Inquiries regarding sharing of deidentified data shall be addressed to the corresponding author (anna.martner@gu.se).

Acknowledgements: This work was supported by the Swedish Medical Research Council (Vetenskapsrådet; 2021-04779), the Swedish Cancer Society (Cancerfonden; 19 0033 Pj and 19 0030 SIA) and ALF Funds at Sahlgrenska University Hospital (ALFGBG-438371).
To the editor,

Recipients of allogeneic haematopoietic stem cell transplantation (allo-HCT) are at elevated risk for severe disease and death from COVID-19 and mount suboptimal immune responses following COVID-19 vaccination, in particular during the first years after transplantation. Previous studies in healthy individuals support an association between adverse reactions after COVID-19 vaccination and induced humoral immunity but whether adverse vaccine reactions also are associated with T cell reactivity remains to be elucidated. Here we report that adverse reactions to COVID-19 vaccination predict the evolvement of virus-specific T cells among recipients of allo-HCT.

This study is part of the DurIRVac study (EudraCT no. 2021 000349 42) that was approved by the Swedish Ethical Review Authority (permit no. 2021 00539) and by the Swedish Medical Products Agency (permit no. 5.1 2021 11118), and followed the European Society for Blood and Marrow transplantation (EBMT) guidelines for COVID-19 vaccination (www.ebmt.org; Version 6.0, May 31, 2021). The study was performed in accordance with the declaration of Helsinki and all participants gave written informed consent before enrolment. The first cohort constituted 50 patients having undergone allo-HCT 92 months (median, range 7-340) prior to the first COVID-19 vaccine dose. Patients were immunized with two doses of the mRNA-based COVID-19 vaccines BNT162b2 (Pfizer-BioNTech Comirnaty; n=32) or mRNA-1273 (Moderna Spikevax; n=18) with 41 days (median, range 40-50) between doses. Patients with previous PCR-confirmed COVID-19 infection or antibodies against SARS-CoV-2 in baseline samples were excluded.
A second cohort comprised 37 COVID-19-naïve allo-HCT recipients who fulfilled the criteria from the Public Health Agency of Sweden for receiving an early third dose of COVID-19 vaccine, i.e., to have undergone transplantation within three years, or to currently receive immunosuppressive treatment for graft-versus-host disease (GvHD). Patients in this cohort received a third mRNA vaccination (BNT162b2, n=24 or mRNA-1273, n=13) at 127 days (median, range 56-174) after the second dose. Eight patients were included in both cohorts. Further baseline characteristics of these cohorts are provided in 6, 7.

Two weeks after each vaccination, patients completed a questionnaire regarding possible adverse events categorized per the Common Terminology Criteria for Adverse Events standards. Adverse events, including occurrence of GvHD, were also retrieved from review of medical records. Thirty-six of 48 (75%) of allo-HCT recipients experienced adverse reactions following the first vaccination and 26/49 (53%) following the second vaccine dose. No serious adverse events were recorded. Adverse events were mostly mild and only 3 patients reported moderate adverse reactions. In the prioritized third-dose cohort 15/33 (45%) experienced adverse reactions (2 moderate, 13 mild). The lower frequency of adverse events likely reflects the more pronounced degree of immunodeficiency within cohort 2, with shorter time elapsed since transplantation and higher frequency of patients receiving immunosuppressive treatment. In both cohorts, local reaction at the injection site was the most common adverse event followed by fatigue, malaise, myalgia, and headache (Table 1). Three patients reported worsening of GvHD and two experienced de novo onset GvHD. These reactions resolved following topical skin therapy, modest augmentation of the prednisone dose, or spontaneously. The frequency of adverse reactions was similar or slightly higher than that reported in a previous trial in mRNA COVID-19-vaccinated allo-HCT recipients 10, but lower than reported in the BNT162b2 and mRNA-1273 registration trials enrolling
participants from the general population. However, larger cohorts of vaccinated allo-HCT recipients and a similar reporting system for adverse reactions as for the registration trials would be needed to elucidate if adverse reactions are more common among allo-HCT.

Peripheral blood was collected immediately before the first and third vaccine doses, four weeks (median 28, range 16-38 days) after the first, second and third doses and at 5.5 months (median, range 3.8-5.6) after the second dose. To quantify vaccine-specific cellular responses, the whole blood samples were stimulated \textit{ex vivo} with multimer peptides spanning the S1 portion of the spike protein to induce the release of T cell-derived IFN-\(\gamma\) from SARS-CoV-2 specific T cells. This assay captures virus-specific T cells (CD4\(^+\) and CD8\(^+\)) with high sensitivity and specificity. In brief, 1 ml of peripheral blood, collected in lithium-heparin tubes, was stimulated with 1 \(\mu\)g/ml/peptide of 170 fifteen-mer peptides with 11-amino acid overlap spanning the N-terminal SARS-CoV-2 spike 1 (S1) domain (S1; product number: 130-127-041, Miltenyi Biotec). After two days of incubation at 37\(^\circ\)C, samples were centrifuged and IFN-\(\gamma\) content of recovered plasma was determined by ELISA (DY285B, R&D systems) or by FirePlex (Abcam, ab285173) according to the manufacturer’s instructions. Humoral responses were assessed by quantification of serum anti-RBD IgG (SARS-CoV-2 IgG II Quant, Abbott, Illinois, USA) using a chemiluminescent microparticle immunoassay in an automated Alinity system, as described.

Patients in cohort 1 experiencing adverse reactions to the first vaccination showed significantly higher levels of virus-specific T cells as reflected by increased S1-induced IFN-\(\gamma\) in plasma supernatants (Figure 1A). The enhanced T cell response among patients experiencing adverse events to at least one vaccine dose remained significant also after the second vaccination (Figure 1A). Adverse reactions to the first vaccine dose were also
associated with significantly higher anti-RBD IgG levels with a similar non-significant trend after two vaccine doses (Figure 1B). In the third dose-prioritized patients (cohort 2) induction of SARS-CoV-2 specific T cells was superior in patients experiencing adverse reactions to third dose vaccination (Figure 1C) with a similar trend for induced anti-RBD-IgG (Figure 1D).

Systemic adverse events, referring to any event other than local reactions, appeared particularly predictive of vaccine immunogenicity. Hence, patients experiencing at least one systemic adverse reaction to the first or second immunization showed significantly higher levels of virus-specific T cells as well as anti-RBD IgG at 1 month and 5.5 months after the second vaccine dose (Figure 1E-H). Concordantly, vaccine-induced fever has been linked to robust antibody responses towards HPV and COVID-19 \(^8, 14\). None of the systemic side effects significantly predicted evolving immune responses when analysed separately, likely explained by the small sample size. Also, no significant association between systemic adverse events and immunogenicity was seen in the third dose cohort, in which only seven patients experienced systemic reactions.

In accordance with previous studies of mRNA COVID-19-vaccinated healthy subjects \(^8, 9\), female gender and low age was associated with enhanced frequency of adverse reactions also among vaccinated allo-HCT recipients (Table 2). In cohort 1, patients receiving the BNT162b2 vaccine reported more adverse reactions compared with patients receiving the mRNA-1273 vaccine (Table 2). This was unexpected, but likely explained by the higher age of patients receiving the mRNA-1273 vaccine in this cohort (median age 63 years, range 46-71 vs 35 years, range 18-58 for BNT162b2 vaccinated patients). Patients transplanted within
the last two years showed reduced frequency of adverse reactions, and patients with chronic GvHD tended to report more adverse events (Table 2).

The association between adverse vaccine reactions and T cell immunogenicity remained significant in multivariate linear regression analysis when taking potential confounders (age, sex, vaccine type, immunosuppressive therapy and chronic GvHD) into account. Thus, presence of adverse reactions independently predicted T cell responses in cohort 1 following the first immunization \((P=0.019) \) and following the third vaccine dose \((P=0.032) \) in cohort 2.

To conclude, this study shows that recipients of allo-HCT who experience adverse reaction to mRNA COVID-19 vaccination were more likely to mount durable SARS-CoV-2 specific immune responses. Systemic adverse reactions appeared more predictive of immunoreactivity compared with local adverse reactions, but further studies are needed to learn which side effects are predictive of adaptive immune responses for improved vaccine formulations.
References

Table 1. Adverse reactions after COVID-19 vaccination

<table>
<thead>
<tr>
<th></th>
<th>Cohort 1 (n=50)</th>
<th>Cohort 2 (n=37)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dose 1</td>
<td>Dose 2</td>
</tr>
<tr>
<td>Evaluable patients¹, n (%)</td>
<td>48 (96)</td>
<td>48 (96)</td>
</tr>
<tr>
<td>No adverse events, n (%)</td>
<td>12 (25)</td>
<td>22 (46)</td>
</tr>
<tr>
<td>Local reaction at injection site, n (%)</td>
<td>30 (62)</td>
<td>17 (35)</td>
</tr>
<tr>
<td>Systemic reaction², n (%)</td>
<td>23 (48)</td>
<td>17 (35)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>10 (21)</td>
<td>13 (27)</td>
</tr>
<tr>
<td>Myalgia</td>
<td>9 (19)</td>
<td>7 (14)</td>
</tr>
<tr>
<td>Headache</td>
<td>7 (15)</td>
<td>7 (14)</td>
</tr>
<tr>
<td>Malaise</td>
<td>7 (15)</td>
<td>13 (27)</td>
</tr>
<tr>
<td>Fever</td>
<td>3 (6)</td>
<td>2 (4)</td>
</tr>
<tr>
<td>Nausea</td>
<td>1 (2)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>GvHD³-related</td>
<td>5 (10)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

¹Patients completing the questionnaire regarding adverse events

²Any adverse event other than local reactions

³Graft versus host disease
Table 2. Patient characteristics vs adverse reactions after COVID-19 vaccination.

<table>
<thead>
<tr>
<th>Adverse reaction</th>
<th>Cohort 1</th>
<th></th>
<th>Cohort 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dose 1</td>
<td></td>
<td>Dose 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No (n=12)</td>
<td>Yes a (n=36)</td>
<td>No (n=11)</td>
<td>Yes b (n=37)</td>
</tr>
<tr>
<td>Age, median (range), years</td>
<td>65 (40-75)</td>
<td>50 (29-78)</td>
<td>65 (41-75)</td>
<td>48 (29-78)</td>
</tr>
<tr>
<td><24 months since allo-HCT³, n (%)</td>
<td>4 (33)</td>
<td>2 (6)</td>
<td>4 (36)</td>
<td>2 (5)</td>
</tr>
<tr>
<td>Female sex, n (%)</td>
<td>2 (17)</td>
<td>21 (58)</td>
<td>1 (9)</td>
<td>22 (59)</td>
</tr>
<tr>
<td>Received Pfizer⁴ vaccine, n (%)</td>
<td>4 (33)</td>
<td>26 (72)</td>
<td>3 (27)</td>
<td>27 (73)</td>
</tr>
<tr>
<td>cGvHD⁵, n (%)</td>
<td>2 (17)</td>
<td>15 (42)</td>
<td>2 (18)</td>
<td>15 (41)</td>
</tr>
<tr>
<td>Ongoing IST⁶, n (%)</td>
<td>4 (33)</td>
<td>5 (14)</td>
<td>4 (36)</td>
<td>5 (14)</td>
</tr>
</tbody>
</table>

¹Any adverse reaction to (a) the first vaccine dose, (b) at least one of the first two doses, (c) the third vaccine dose,
²Statistics by (d) Mann-Whitney test or (e) Fisher’s exact test, ³Allogenic hematopoietic cell transplantation, ⁴BNT162b2 (Pfizer-BioNTech),
⁵Chronic graft versus host disease, ⁶Immunosuppressive treatment
Figure 1. Adverse events following COVID-19 vaccination predict evolving vaccine-specific T cell and antibody responses. Samples from allo-HCT patients who experienced (Yes) or did not experience (No) adverse events to COVID-19 vaccination were analysed for vaccine-specific T cell and antibody responses. (A, C, E, G) Whole blood was stimulated with S1-peptides for 48 h and analysed for T cell-induced interferon-γ (IFN-γ). (B, D, F, H) IgG serum antibody levels of the receptor-binding domain (RBD) within S1 were measured. (A-B) Immunogenicity in samples from allo-HCT cohort 1, retrieved 1 month after the first and second vaccine dose. (C-D) Immunogenicity in samples from allo-HCT cohort 2, retrieved 1 month after the third vaccine dose. In (E-H) patients in cohort 1 are separated as experiencing local adverse events (local), or at least one systemic adverse event (systemic) to any of the two first vaccine doses. (E-F) shows results 1 month after the second vaccine dose, while (G-H) shows results 5-6 months after the second vaccine dose. The number of samples above the cut off for each assay (>5 pg/ml IFN-γ detected by ELISA (A, C and E), >18 pg/ml IFN-γ detected by Fireplex (G) and >14 BAU/ml IgG), are shown in brackets below the number of observations (n). Statistics by Mann-Whitney test. Dashed lines show the limit of detection (LOD) for each assay.