ETV6-related thrombocytopenia: dominant negative effect of mutations as common pathogenic mechanism

by Michela Faleschini, Daniele Ammeti, Nicole Papa, Caterina Alfano, Roberta Bottega, Giorgia Fontana, Valeria Capaci, Melania E. Zanchetta, Federico Pozzani, Francesca Montanari, Valeria Petroni, Paola Giordano, Patrizia Noris, Fiorina Giona, and Anna Savoia

Received: February 4, 2022.
Accepted: May 10, 2022.

Citation: Michela Faleschini, Daniele Ammeti, Nicole Papa, Caterina Alfano, Roberta Bottega, Giorgia Fontana, Valeria Capaci, Melania E. Zanchetta, Federico Pozzani, Francesca Montanari, Valeria Petroni, Paola Giordano, Patrizia Noris, Fiorina Giona, and Anna Savoia. ETV6-related thrombocytopenia: dominant negative effect of mutations as common pathogenic mechanism. Haematologica. 2022 May 19. doi: 10.3324/haematol.2022.280729. [Epub ahead of print]

Publisher's Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
ETV6-related thrombocytopenia: dominant negative effect of mutations as common pathogenic mechanism

Michela Faleschini¹, Daniele Ammeti¹, Nicole Papa², Caterina Alfano³, Roberta Bottega¹, Giorgia Fontana¹, Valeria Capi³, Melania E. Zanchetta¹, Federico Pozzani⁴, Francesca Montanari⁵, Valeria Petroni⁶, Paola Giordano⁷, Patrizia Noris⁸, Fiorina Giona⁹, Anna Savoia¹²

¹Istitute for Maternal and Child Health – IRCCS Burlo Garofolo, Trieste, Italy;
²Department of Medical Sciences, University of Trieste, Trieste, Italy;
³Structural Biology and Biophysics Unit, Fondazione Ri.ME D, Palermo, Italy;
⁴Department of Life Sciences, University of Trieste, Trieste, Italy;
⁵San’Orsola-Malpighi University Hospital, Medical Genetics Unit, Bologna, Italy;
⁶SOSD Pediatric Oncohematology, University Hospital “Ospedali Riuniti”, Ancona, Italy;
⁷Interdisciplinary department of Medicine, Pediatric Unit, University “A.Moro” of Bari, Bari, Italy;
⁸Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy;
⁹Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy;

ACKNOWLEDGEMENTS

This study was supported by IRCCS “Burlo Garofolo” (Ricerca Corrente 01/2018), AIRC Grant IG-21974 and IRCCS Policlinico San Matteo Foundation (Ricerca corrente 2018 intramural research grant to N.P.).

We thank Professor Walter H A Kahr for provide us the lentiviral vector from which we cloned the wild type full-length ETV6 cDNA.

AUTHORS:

Contribution: M.F. and A.S. designed the study. M.F. and D.A. performed research and analysed data. N.P. and F.P. performed luciferase assays. A.C. performed structural analysis. R.B. and G.F. performed mutational screenings. V.C. and M.E.Z. performed immunofluorescence assays. F.M., V.P., P.G., P.N. and F.G. enrolled the patients. F.M., D.A. and A.S. wrote the manuscript. All authors read and approved the manuscript.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Anna Savoia, IRCCS Burlo Garofolo, Via dell’Istria 65/1, 34137 Trieste; e-mail: anna.savoia@burlo.trieste.it.
DATA SHARING STATEMENT. All data relevant to the study are included in the manuscript or are available upon request to the corresponding author.

MAIN TEXT

Inherited thrombocytopenias are a group of rare diseases characterized by low platelet count and variable bleeding tendency. In some forms, patients might develop additional phenotypes during life, such as myeloid neoplasms as in ETV6-Related Thrombocytopenia (ETV6-RT). ETV6-RT is caused by germline heterozygous mutations of ETV6, a gene encoding a master hematopoietic transcriptional repressor structured in three functional domains: the N-terminal pointed (PNT), the central regulatory domain (CRD) and C-terminal DNA-binding (ETS). \(^1\)

To our knowledge, at least 15 different ETV6 variants, mainly amino acid substitutions, have been associated with thrombocytopenia,\(^2\)–\(^9\) though their pathogenic role has not always been clarified. Moreover, whereas ETV6 is well known as a tumor suppressor in chromosomal translocations associated to childhood leukemia,\(^10\) the molecular mechanism responsible for ETV6-RT remains to be elucidated.\(^2,3\)

Understanding the molecular mechanisms involved in ETV6-RT pathogenesis is important in order to clarify the role of ETV6 in megakaryopoiesis and leukemia and identify a possible therapeutic approach able to correct platelet biogenesis and prevent the onset of leukemia.

For these reasons, we have studied seven ETV6 missense variants identified in patients with thrombocytopenia, demonstrating that five of them reduce the repression activity of ETV6 preventing its localization into the nucleus, as confirmed by inhibition of the nuclear export by leptomycin B. Moreover, we have demonstrated that the mutations act through a dominant negative effect, which results in accumulation of the wild type (WT) protein in the cytoplasm likely due to formation of WT-mutant dimer of ETV6.

Individuals with suspicion of inherited thrombocytopenia due to their low platelet count were referred to our institution for molecular diagnostic purpose. A Next Generation Sequencing (NGS) approach allowed us to identify seven missense variants in ETV6 gene, some of which were previously reported in patients with thrombocytopenia or leukemia (Table S1). \(^5\)–\(^7,9\)

All the variants are clustered within the ETS domain except for the S22N, that hits the PNT domain, and the H224Q, that is located in the CRD as the control mutation P214L. The ETS domain is a critical site for the binding of ETV6 to the DNA, suggesting that its impairment can lead to a loss or an alteration in transcriptional repression. Accordingly, different bioinformatic tools suggest a higher impact on the proteins function for the five variants that reside in the ETS domain, while H224Q and S22N were predicted as likely benign substitutions. The pathogenic role of these five variants clustered within the ETS domain is supported also by structural analysis revealing a potential effect not only of R369W and W380R\(^6\) but also of the novel Q347P and R396G variants on protein stability and folding (Figure S1A). Moreover, since
Structural analysis of ETS bound to a specific DNA sequence revealed that R396 and R399 are involved in electrostatic interactions with its DNA cognate (Figure S1B). R396G and R399H substitutions are likely to prevent the binding of the mutant forms of ETV6 to its targets.

Notably, two germline disease causing mutations, c.1106G>A and c.1195C>T involving R369 and R399, respectively, but with a different amino acid substitution are previously reported. To verify the predictions obtained from in silico analyses, we tested the activity of reporter luciferase gene under the control of the stromelysin-3 (MMP3) promoter, a validated target of ETV6.11 In HEK293T cells, overexpression of the wild type form of ETV6 resulted in a repression of luciferase activity to 44.3±8.6% compared to the empty vector. On the contrary, transfecting the Q347P, R369W, W380R, R396G and R399H mutant (M-ETV6) forms, as well as P214L used as control,2,3 we observed significantly higher luciferase activity (Figure S2).

These results highlight the loss of the repression ability of these ETV6 variants on the MMP3 promoter, confirming their pathogenicity. On the contrary, the repressive activity was maintained by S22N and H224Q fully comparable to the wild type, suggesting the absence of any pathogenic role, according to the in-silico predictions.

To determine whether the loss of repression activity of the M-ETV6 forms could be explained also with a reduced nuclear localization of the protein, as observed for other mutations,2,3 we performed immunofluorescence assays in HeLa cells. Whereas the WT, S22N and H224Q forms are mainly detected into the nucleus, the other mutant proteins are prevalently cytoplasmatic (Figure 1A, B). The aberrant localization of the Q347P, R369W, W380R, R396G and R399H mutants was confirmed by Western Blot assay of cellular fractions. While the wild type protein detected into the nucleus is 69.9±16.5%, the nuclear fractions of mutant proteins account for 5.7±4.1%, 28.3±9.7%, 7.7±5.8%, 30.8±15.3% and 23.2±8.8%, respectively (Figure 1C, D).

We then investigated the mechanisms retaining the M-ETV6 in the cytoplasm to understand whether mutations prevent ETV6 from entering the nucleus or rapidly re-localize the non-functional proteins into cytoplasm. Since the nuclear export of ETV6 is inhibited by leptomycin B,12 we treated cells overexpressing Q347P- and R399H-ETV6, which substitutions are predicted to affect the folding and the DNA binding, respectively (Figure S1). In addition, we analyzed also W380R mutation which was previously demonstrated to have a strong impact on the protein folding.6 The leptomycin B treatment resulted in increase of cells with WT-ETV6 nuclear localization, suggesting that the portion of protein that enter into the nucleus is no longer able to be exported, as observed also for the p65 subunit of NF-kB used as control.13 In contrast, Q347P-, W380R- and R399H-ETV6 maintained their cytoplasmic localization, indicating that M-ETV6 forms, independently of the extent of the defect caused by mutations on folding or DNA binding, do not enter the nucleus (Figure 2).
Since mutations fail to correctly localize into the nucleus and ETV6 exerts its function after homodimerization mediated by its PNT domain, the pathogenetic mechanism in ETV6-RT could be mediated by a dominant negative mechanism leading to the accumulation not only of the mutated but also of the WT forms of ETV6 in the cytoplasmic compartment.

Co-transfection of HEK293T cells with WT- and M-ETV6 differentially tagged allowed us to confirm that both WT-ETV6-Myc and WT-ETV6-Flag proteins gather in the nucleus. On the contrary, when the WT-ETV6-Flag is co-expressed with M-ETV6-Myc, both proteins were mainly detected into the cytoplasm (Figure 3A). A significant shift of WT-ETV6-Flag from nucleus to cytoplasm was confirmed also by quantitative analysis which detected 37.0±16.4% of the wild type protein in the cytoplasm when co-expressed WT-ETV6-Myc, while when transfected in combination with all M-ETV6 tested the protein amount reach a value up to 81.1±10.8% (Figure 3B), supporting our hypothesis that the mutated forms act through dominant negative effect on wild type protein, retaining this form into the cytoplasm and consequently affecting its functions.

To further support the dominant negative effect, we tested the transcriptional activity using the luciferase assay. As above (Figure S2), expression of WT-ETV6 alone represses the luciferase activity whereas expression of M-ETV6 abolishes the inhibition. Consistent with a dominant negative effect, co-expressing the WT- with the M-ETV6, we did not detect any significant difference in comparison with the effect of mutants alone (Figure 3C), confirming that M-ETV6 antagonizes the repression activity of WT-ETV6. For all the mutations tested, we observed a slight increment of the repression activity, which could be explained by formation of WT/WT functionally active homodimers.

In summary, we show that all but two of the variants identified are pathogenic. Indeed, their respective mutant transcription factors do not enter the nucleus to exert their repressive activity. Moreover, inhibiting the protein nuclear export, we fully demonstrated that there is no trafficking of the mutant transcription factor between cytoplasm and nucleus, further supporting the hypothesis that M-ETV6 are not able to translocate in the nucleus.

In addition, we demonstrate and extend the dominant negative effect of ETV6 mutations described to date to other mutations (Q347P, W380R and R396G), suggesting that this is a common pathogenic mechanism of the disease.

These results increase our knowledge on the molecular basis of ETV6-RT and allow us to correctly classify variants to provide a definitive molecular diagnosis to patients and their families.

Since ETV6-RT is associated with an increased risk to develop hematological malignancies as supported also by identification of ETV6 germline mutations in patients affected by leukemia, correct molecular diagnosis would allow us to better understand this disease and to evaluate additional risk for patients. Moreover, improve our knowledge on pathogenic mechanisms is of fundamental importance to develop therapeutic strategies. Since M-ETV6 is not able to enter the nucleus, as fully demonstrated by the leptomycin B treatment, we should develop approaches leading to "release" the wild type form of ETV6, for
instance silencing the mutated transcript and/or preventing the dimerization of the wild type and mutated forms of the transcription factor.

References

Figure 1. Altered protein distribution caused by ETV6 mutation. (A) Immunofluorescence analysis in HeLa cells after transfection of wild type (WT) or mutated ETV6 cDNA cloned into pcDNA3.1-Myc tagged expression vector. P214L was used as control mutation. ETV6-Myc forms were detected using anti-Myc antibody (red), nuclei were marked with Hoechst staining (blue). Images were obtained with a Zeiss Axioplan 2 epifluorescence imaging microscope and acquired with a Zeiss AxioCam 506 color using a 40X Plan-NEOFLUAR objective. Images were processed using Zeiss ZEN 3.1 (blue edition), while brightness and contrast were adjusted using Adobe Photoshop 2020. Scale bar = 50 μm. (B). Histogram represents cell fraction with nuclear (N), cytoplasmatic (C) or both (N/C) ETV6 staining. Striped column represents control mutation. (C) Western Blot (WB) analysis of nuclear and cytoplasmatic fraction of HEK293T cells 48 hours after transfection with ETV6 Myc-tagged. Hsp90 and SP1 were used as cytoplasmatic and nuclear markers, respectively. (D) WB semi-quantitative analysis performed using ImageJ 1.53e (National Institutes of Health). Histogram shows the protein ratio of nuclear (N) and cytoplasmatic (C) fraction. All data reported are representative of at least three independent experiments. Error bars represent standard deviation (SD). ** = p<0.01, *** = p<0.001, versus ETV6-WT protein ratio, Student’s T test.

Figure 2. ETV6 mutations impair its ability to enter into the nucleus. (A) ETV6 immunostaining in HeLa cells after 4 hours of Leptomycin B (LB) treatment (50nM). Subcellular localization of Q347P, W380R and R399H mutation (red) and p65 (green) before (NT) and after LB treatment. Nuclei were marked with Hoechst staining (blue). Images were obtained with a Zeiss Axioplan 2 epifluorescence imaging microscope and acquired with a Zeiss AxioCam 506 color using a 40X Plan-NEOFLUAR objective. Images were processed using Zeiss ZEN 3.1 (blue edition), while brightness and contrast were adjusted using Adobe Photoshop 2020. (B) Cell counts basing on ETV6 subcellular localization before and after treatment with LB. Histogram represents cell fraction with nuclear (N), cytoplasmatic (C) or both (N/C) staining, confirming the intracellular distribution variation of ETV6 variants after LB treatment. All data reported are representative of at least three independent experiments.

Figure 3. Alteration of WT function and intracellular distribution after co-transfection with mutant forms. (A) WB analysis performed in HEK293T 48 hours after transfection. Mutant forms and control WT are Myc-tagged, instead the co-transfected WT form is Flag-tagged. Hsp90 and SP1 were used as cytoplasmatic and nuclear markers, respectively. (B) Semi-quantitative analysis of WT-ETV6 Flag-tagged protein ratio was obtained using ImageJ. Histogram shows nuclear (N) and cytoplasmatic (C) ratios of respective variant. Error bars represent standard deviation of three independent experiments. *= p<0.05, ** = p<0.01, *** = p<0.001, versus WT-ETV6, Student’s T test. (C) Luciferase assay performed on HEK293T 48 hours after single transfection (black) or co-transfection (grey) of respective variant with WT form to analyse functional loss of WT form due to the presence of mutated forms. Firefly luciferase cloned downstream MMP3 promoter was used as reporter and Renilla luciferase under the control of CMV promoter as normalizer.
The experiment shows co-transfection cause only a partial reduction of firefly/renilla ratio, accordingly to the dominant negative hypothesis. P214L used as control mutation (striped column). Error bars represent standard deviation of three independent experiments.
SUPPLEMENTARY DATA

<table>
<thead>
<tr>
<th>Nucleotide</th>
<th>Protein</th>
<th>Domain</th>
<th>Variant Effect Predictor</th>
<th>MAF (GnomAD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>c.65G>A</td>
<td>p.S22N</td>
<td>N-term</td>
<td>T</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>7*10⁻⁶</td>
</tr>
<tr>
<td>c.672C>G</td>
<td>p.H224Q</td>
<td>CRD</td>
<td>T</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>2*10⁻⁵</td>
</tr>
<tr>
<td>c.1040A>C</td>
<td>p.Q347P</td>
<td>ETS</td>
<td>D</td>
<td>7*10⁻⁶</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PD</td>
<td>NR</td>
</tr>
<tr>
<td>c.1105C>T<sup>1,2</sup></td>
<td>p.R369W<sup>a</sup></td>
<td>ETS</td>
<td>D</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PD</td>
<td>NR</td>
</tr>
<tr>
<td>c.1138T>A<sup>1,3</sup></td>
<td>p.W380R</td>
<td>ETS</td>
<td>D</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PD</td>
<td>NR</td>
</tr>
<tr>
<td>c.1186A>G<sup>4</sup></td>
<td>p.R396G</td>
<td>ETS</td>
<td>D</td>
<td>26.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PD</td>
<td>NR</td>
</tr>
<tr>
<td>c.1196G>A<sup>2</sup></td>
<td>p.R399H<sup>a</sup></td>
<td>ETS</td>
<td>D</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PD</td>
<td>32</td>
</tr>
</tbody>
</table>

Supplementary Table 1. In silico pathogenicity prediction of ETV6 variants identified by NGS analysis.

The pathogenicity of ETV6 variants was evaluated using the following bioinformatic tools: PROVEAN, PolyPhen-2, CADD and ClinVar provided by Variant Effect Predictor (VEP) (https://grch37.ensembl.org/info/docs/tools/vep/index.html).

Minor allele frequency (MAF) provided by GnomAd (https://gnomad.broadinstitute.org/).

^a Same amino acids involved in other substitutions described in Zhang et al., 2015 and Nishii et al., 2021.

Supplementary Figure 1. Mutations exert a different effect on protein structure (A) Analysis of the structure of ETS domain of ETV6 (PDB ID 2DAO) reveals that mutations Q347P and R396G can destabilize the fold of the α-helixes to which they belong, affecting the entire protein stability and folding. Indeed, proline residues cannot form the canonical backbone α-helix hydrogen bonds having no amide hydrogen. Furthermore, their ring structure sterically inhibits the formation of α-helix turns resulting in bending the helix’ axis. On the other hand, glycine residues are too flexible and do not suit with the well constrained α-helix structure. (B) The substitution R399H might have effects on the DNA binding function of the protein. Indeed, structural analysis of ETS bound to a specific DNA sequence (PDB ID 4MHG) revealed that in the wild type protein, R399 is involved in electrostatic interactions with its DNA cognate. The substitution with a histidine residue might destroy these interactions and affect the protein function. Similarly, this might also happen for the substitution R396G being R396 also involved in electrostatic interactions with the DNA binding partner. The protein structures were displayed and analysed by the graphic program Pymol (The PyMOL Molecular Graphics System, Version 1.3 Schrödinger, LLC).

Supplementary Figure 2. ETV6 mutations impair protein repression ability. Dual luciferase assay of HEK293 cells 48 hours after transfection with wild type or mutated ETV6, firefly luciferase cloned downstream MMP3 promoter and Renilla luciferase under the control of CMV promoter as normalizer. Histogram shows the firefly/renilla light emission ratio. The ratio is normalized on empty vector (black bar) levels. P214L (striped column) was used as control mutation. Error bars represent standard deviation of three independent experiments. ### = p<0.001, versus empty vector. * = p<0.05, ** = p<0.01, *** = p<0.001, versus ETV6 WT overexpression, Student’s T test.