
Diagnosis of acute promyelocytic leukemia based on 
routine biological parameters using machine learning 
Acute promyelocytic leukemia (APL) has become the most 
curable subtype of acute myeloid leukemia (AML) since 
the introduction of all-trans retinoic acid and arsenic tri-
oxide.1 However, this disease is still characterized by a high 
rate of early death (10-17%), mainly due to severe coagu-
lopathy.2,3 In order to avoid these early deaths, immediate 
treatment initiation is recommended, either with all-trans 
retinoic acid or with chemotherapy in case of hyperleu-
cocytosis.4 Hence, a fast and accurate diagnosis is man-
datory to allow early recognition and treatment of APL.  
Cytology is the fastest technique for the diagnosis of APL, 
while the definitive confirmation requires the observation 
of the t(15;17) translocation or the PML-RARA fusion mRNA 
amplification, which induces further delay. Cytogenetic 
and molecular confirmation can be more difficult when 
other partners of RARA are implicated,5 and even more 
challenging in exceptional cases of viral insertion in the 
RARA gene, as recently described.6 The cytological diag-
nosis of APL is usually straightforward, when multiple 
bundles of Auer rods are observed in the blasts cells. 
However, the microgranular variant might be more difficult 
to diagnose, even for experienced hematopathologists. In 
some cases, myeloperoxidase deficiency in the blast cells 
further complicates the recognition of APL.7,8 Moreover, 
cytology requires a long training to recognize rare diseases 
such as APL, and this expertise is not always available.  
We hypothesized that routine biological parameters might 
fuel an artificial intelligence to identify APL without a high 
level of cytological expertise. We collected 34 basic bio-
logical parameters in all the APL patients diagnosed in 
Lyon University Hospital during the period from 2013 to 
2020 (n=76), and in patients with non-promyelocytic AML 
matched according to the year of diagnosis (n=146). Alto-
gether, these patients constituted the cohort 1 (n=222). All 
the APL cases were confirmed by cytogenetic and/or 
quantitative reverse transcription polymerase chain reac-
tion (RT-qPCR) amplification of the PML-RARA fusion tran-
script. The biological parameters were measured during 
the first 2 days of hospital referral, before any treatment 
initiation. Missing data were imputed by the variable’s 
median value.9 The basic hematology and hemostasis par-
ameters were available for most of the patients, but there 
were more missing data concerning the biochemical par-
ameters (Online Supplementary Table S1). The cohort was 
randomly split into a training (80%, n=177) and a test co-
hort (20%, n=45). Different classification algorithms were 
then compared (XGBoost, random forest, gradient boost-
ing classifier, adaboost classifier, decision tree, logistic re-
gression and support vector machine), considering APL 

diagnosis as a binary outcome and using 5X cross-valida-
tion to select the more stable models. No normalization 
of the data was used, because both strategies tested 
(StandardScaler, MinMaxScaler) had a negative impact on 
the performances of the algorithm. Hyperparameter tun-
ing was performed using GridSearchCV. All analyses were 
performed using Python v3.7. Among the different artificial 
intelligence strategies tested, XGBoost’s gradient boosting 
algorithm achieved the highest performances in the test 
cohort, with an area under the receiver operator curve 
(ROC) of 0.95 (Figure 1A, see the Online Supplementary Ap-
pendix for methodological details). Of note, learning 
curves reached a plateau with 80-100 patients, meaning 
that no major refinements is expected with an increase 
in the size of the cohort (data not shown). Using this 
model, we established artificial intelligence for promye-
locytic leukemia (AIPL), an open-source tool with a graph-
ical user interface to evaluate the probability of APL 
diagnosis (https://github.com/Nico-Facto/Leukemia-Apl-
Classification) and propose a ready-to-use web application 
(https://share.streamlit.io/nico-facto/leukemia-apl-
classification/main/Leucemie_app.py). The eight par-
ameters required to run AIPL are the following: age, white 
blood cells (absolute value), lymphocytes (% of total leu-
cocytes), neutrophil polynuclear count (absolute value), 
mean corpuscular volume (MCV), mean corpuscular he-
moglobin concentration (MCHC), prothrombin time ratio, 
and fibrinogen concentration. 
In order to validate the AIPL tool, its performances were 
assessed in three independent retrospective validation 
cohorts from three other hospitals (cohorts 2, 3, and 4) 
which comprised 44 (including 15 APL), 258 (including 46 
APL), and 63 (including 32 APL) patients, respectively. A 
prospective cohort (cohort 5) was also collected in the 
Lyon University Hospital with 50 (including 10 APL) new 
AML diagnoses referred during a 6-month period. AIPL 
showed a very high discrimination ability both in the 
merged (n=415 patients, AUC =0.96, Figure 1B) and in indi-
vidual cohorts (Figure 1C). Importantly, AIPL output is not 
only a classification (APL vs. non-APL), but also a con-
fidence score reflecting how much the conclusion can be 
trusted. As expected, the confidence score was signifi-
cantly higher in cases where the prediction was correct 
compared to cases where the AIPL prediction failed (mean 
95% vs. 85%, Mann-Withney test P<0.0001, Figure 2A). 
Hence, the AIPL confidence score could be used to de-
termine for which patient the prediction of AIPL is reliable 
in routine use. For 244 (59%) patients with a high con-
fidence score (above 99%), the accuracy of AIPL was 
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99.5% (only one false negative case, i.e., an APL patient 
wrongly classified as non-APL AML). For 114 (27%) patients 
with an intermediate confidence score (between 85 and 
99%), the accuracy was 85% (7 false negative and 10 false 
positive cases, i.e., a non-APL AML patient wrongly clas-
sified as APL), and for 57 (14%) patients with a low con-
fidence score (below 85%), the accuracy dropped to 68% 
(8 false negative and 10 false positive cases) (Figure 2B). 
As the data from the retrospective cohorts were acquired 
on different analyzers, it was possible to assess the im-
pact of the variability in analytical techniques on AIPL per-
formances. When comparing different time periods 
determined by changes in analyzers, there was no signifi-
cant variation in the level of confidence scores of AIPL, 
suggesting that this approach is robust to variations due 
to analytical processes (Online Supplementary Figure S1).  
Of note, 16 cases of the microgranular variant of APL were 
identified in the validation cohorts. Their AIPL confidence 
scores tended to be lower than the confidence scores of 
classical APL (86% vs. 92%, ns, Online Supplementary Fig-
ure S2), suggesting that further algorithm training using 
microgranular variants might be interesting. Importantly, 
AIPL correctly identified the six microgranular cases with 
a confidence score above 99%. We also assessed the per-
formances of AIPL in patients with other differential diag-
nosis of APL: aplastic anemia (n=10), acute lymphoblastic 
leukemia (n=28) and AML with t(8;16), a rare subtype of 
AML with clinical presentation often resembling APL (n=9). 
AIPL classified only one case aplastic anemia and one 
case of acute lymphoblastic leukemia as APL, but with 

confidence score below 87%. Hence, with the proposed 
threshold of confidence score of 99%, there was no false 
positive diagnostic of APL in these challenging differential 
diagnoses. 
In order to further interpret the predictions from AIPL, 
Shapley additive explanation (SHAP) was used to illustrate 
the impact of the different parameters according to their 
value obtained from the individual cases of all the valida-
tion cohorts.10 In Figure 2C, the parameters are ordered 
from top to bottom according to their importance in the 
classification, and each individual measure is colored ac-
cording to its impact on the final classification. The high 
performances of AIPL rely on some expected parameters 
such as fibrinogen, prothrombin time ratio, or polynuclear 
neutrophil count (Figure 2C). Unexpectedly, two par-
ameters of red blood cells (MCV and MCHC) were highly 
discriminant between APL and non-APL AML, even if the 
mean values of these parameters remained in the normal 
ranges (mean value of MCV 89 fL vs. 96 fL, mean value of 
MCHC 349 g/L vs. 334 g/L in APL and non-APL cases, re-
spectively). This observation, together with a report of 
PML-RARA expression in burst forming unit-erythroid 
(BFU-E) derived from APL patients,11 raises the hypothesis 
that PML-RARA cells contribute to erythropoiesis. 
To conclude, this work demonstrates that machine learn-
ing based on routine biological parameters provides a fast 
and accurate help for the diagnosis of APL in the majority 
of cases. Given the unmet need to improve the reliability 
of APL diagnosis, other strategies based on incorporation 
of cell population data generated during complete blood 

Figure 1. Development of AIPL for the diagnosis of acute promyelocytic 
leukemia. (A) Receiver-operator characteristics (ROC) curve of the XGBoost 
method in the test cohort. (B) ROC curve in all the patients from the vali-
dation cohorts. (C) Area under the curve of the ROC curves in each valida-
tion cohort, separately.

A B

C

 Haematologica | 107 - June 2022   
1467

LETTER TO THE EDITOR



cell count with cytometry based analyzers,12 or deep 
learning analysis of blood smears, have also been devel-
oped.13 As these approaches rely on parameters not used 
in AIPL, combining them with AIPL could help further in-
crease diagnostic accuracy. Another interesting possibility 
could be the addition of other biological parameters such 
as the fibrinolysis marker D-Dimers, which were not in-
cluded in this retrospective study due to excessive miss-
ing data. 
AIPL might represent a very important complement to 
cytological expertise, and could allow early diagnosis of 
APL in settings where this expertise is not available on a 
24/7 basis, or not available at all, such as in developing 
countries. The consequences of misclassification could 
be excessive treatment with ATRA in case of false positive 
result, or delay in ATRA initiation in case of false negative 
result. Using AIPL with the proposed threshold of 99% of 
confidence score, this risk is very low but should not be 
forgotten. All-trans retinoic acid could hence be initiated 
in patients with a high probability of APL according to 
AIPL prediction without waiting for diagnostic confirma-
tion in specialized laboratories, thus preventing early 
death from coagulopathy. However, an important limita-
tion of AIPL is that its ability to distinguish APL from other 
differential diagnoses such as acute lymphoblastic leuke-
mia or aplastic anemia has not been formally assessed 
in this study. In order to make this tool available, a web 
user interface has been created (available at 
https://share.streamlit.io/nico-facto/leukemia-apl-clas-

sification/main/Leucemie_app.py) to use AIPL in the case 
of patients with myeloid blast on the blood smear. It 
allows to instantaneously classify patients as APL or non-
APL and provides a confidence score. Of course, this re-
sult does not supplant the need to evaluate the bone 
marrow and to formally demonstrate the presence of the 
t(15;17) translocation or the PML-RARA fusion transcript. 
Given the importance of early treatment initiation in 
these patients, we hope that AIPL will contribute to de-
crease early mortality in APL patients. 

Authors 

Estelle Cheli,1 Simon Chevalier,2 Olivier Kosmider,3 Marion Eveillard,4 

Nicolas Chapuis,3 Adriana Plesa,1 Maël Heiblig,5 Lydie Andre,2 Jenny 

Pouget,4 Pascal Mossuz,2 Olivier Theisen,4 Vincent Alcazer,5 Dan 

Gugenheim,6 Nicolas Autexier6 and Pierre Sujobert1,7 
 
1Hospices Civils de Lyon, Hôpital Lyon Sud, Service d'Hématologie 

Biologique, Lyon; 2CHU Grenoble Alpes, Service d’Hématologie 

Biologique, Grenoble; 3APHP, Hôpital Cochin, Service d’Hématologie 

Biologique, Cochin; 4CHU Nantes, Service d’Hématologie Biologique, 

Nantes; 5Hospices Civils de Lyon, Hôpital Lyon Sud, Service 

d'Hématologie Clinique, Lyon; 6Groupe onepoint, Bordeaux and 
7Université Claude Bernard Lyon 1, Faculté de Médecine et de 

Maïeutique Lyon Sud, Charles Mérieux, Lymphoma Immunobiology 

Team, Lyon, France.   

Figure 2. Validation of artificial intelligence 
for promyelocytic leukemia. (A) Mean con-
fidence score of artificial intelligence for 
promyelocytic leukemia (AIPL) in cases cor-
rectly or wrongly classified in all the valida-
tion cohorts. (B) AIPL performances 
according to the confidence score. (C) Sha-
pley additive explanation (SHAP) represen-
tation of the parameters used by AIPL. The 
parameters are ordered from top to bottom 
according to their importance in the clas-
sification, and each individual measure is 
colored according to its impact on the final 
classification (the more a point is red, the 
more it favors the classification as APL)
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