How do mTOR inhibitors fit in the relapsed acute lymphoblastic leukemia treatment landscape?

by Ashley Pinchinat and Elizabeth Raetz

Received: January 17, 2022.
Accepted: January 26, 2022.

Citation: Ashley Pinchinat and Elizabeth Raetz. How do mTOR inhibitors fit in the relapsed acute lymphoblastic leukemia treatment landscape?

Publisher's Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
How do mTOR inhibitors fit in the relapsed acute lymphoblastic leukemia treatment landscape?

Ashley Pinchinat and Elizabeth Raetz
Department of Pediatrics and Perlmutter Cancer Center
NYU Langone Health

Corresponding author:
Elizabeth Raetz, MD
Department of Pediatrics and Perlmutter Cancer Center
NYU Langone Health
e-mail: elizabeth.raetz@nyulangone.org

Word count: 981

In this issue of *Haematologica*, Tasian et al. (1) report the outcomes of a phase 1 trial of temsirolimus in relapsed/refractory pediatric acute lymphoblastic leukemia (ALL). While the survival rates for children with ALL have improved significantly over time, approximately 20% will relapse and this remains a significant challenge with <50% survival rates following initial relapses and far inferior outcomes for multiply relapsed disease. (2) Historical remission rates after second and third marrow relapse are only 44% and 27%, respectively, with a 5 year disease-free survival (DFS) in second and third remission (CR2 and CR3) of 27% and 15%, respectively. (3) Similar response rates and outcomes were reported by Sun et al. (4) in a retrospective analysis of over 500 relapsed/refractory ALL salvage treatment attempts at Therapeutic Advances in Childhood Leukemia and Lymphoma (TACL) institutions, setting the benchmark for remission rates in the second or greater relapse of approximately 40%. To address the challenges of relapse and inferior outcomes with intensive cytotoxic chemotherapy alone, molecularly targeted agents with compelling preclinical rationale have been investigated; most commonly in a combinatorial approach given limited single agent responses in the salvage setting.

Building on observations that phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling is commonly dysregulated in ALL, coupled with preclinical studies showing robust responses to mTOR inhibitors in animal models of human ALL (5), Tasian et al. expanded the portfolio of
mTOR inhibitor trials in pediatric relapsed ALL (Table 1), with the TACL 2014-001 phase 1 trial (NCT01614197) of the mTOR inhibitor temsirolimus in combination with cyclophosphamide and etoposide in pediatric patients 1-21 years of age with second or greater relapses or refractory B and T-cell ALL. Lessons learned from the prior Children’s Oncology Group (COG) ADVL1114 phase 1 trial (NCT01403415) informed temsirolimus dosing and the chemotherapy platform. Treatment on COG ADVL1114 consisted of three weekly doses of temsirolimus in combination with UKALL R3 reinduction chemotherapy (vincristine, dexamethasone, pegaspargase and mitoxantrone). Seven of 15 patients (47%) achieved remission, however, the toxicity associated with temsirolimus in combination with asparaginase and steroids was excessive with dose-limiting toxicity at all dose levels despite two dose de-escalations of temsirolimus to 7.5 mg/m²/dose. (6) The toxicity observed with a four-drug reinduction on COG ADVL1114 prompted the use of an alternative and historically more tolerable cyclophosphamide and etoposide chemotherapy platform on the TACL2014-001 trial and a reduction to two vs. three doses of temsirolimus at a starting dose of 7.5 mg/m²/dose.

Among the 15 evaluable T- and B-ALL patients, the addition of temsirolimus to the cyclophosphamide and etoposide backbone was safe and feasible in this heavily pretreated group, who had received a median of three (range 2-7) prior salvage regimens and more than half of whom had received prior hematopoietic stem cell transplantation (HSCT). Only one patient experienced dose-limiting pneumonitis, pleural and pericardial effusions. Rates of fever and neutropenia, infectious toxicities and metabolic abnormalities were similar to that observed in other trials of cytotoxic therapy for relapsed ALL. There was a 47% overall response rate (CR, CRi, PR) with 27% achieving a complete response and with responses at all four dose levels. Basal activation of the PI3K/mTOR signaling pathway inhibition with dose-dependent in vivo inhibition of phosphosignaling was observed in all patients who participated in these exploratory studies. Based on these data, the recommended phase 2 dose of
temsirolimus in combination with cyclophosphamide and etoposide was deemed to be 15 mg/m\(^2\)/dose, the equivalent of the FDA-approved dose in adults, on Days 1 and 8, though 25 mg/m\(^2\) was tolerated and showed the greatest \textit{in vivo} inhibition of PI3K pathway signaling.

One of the challenges in treating multiply relapsed ALL is prioritizing regimens. The expansion of immunotherapeutic options, particularly in B-ALL, raises questions regarding the role for small molecule therapy and optimal ways to deliver these agents with a growing treatment landscape. An important lesson from this trial is the benefit of using a tolerable platform when pursuing a combinatorial approach to reduce toxicity and optimize the delivery of targeted agents. Future options include combining mTOR inhibitors with other targeted therapies or immunotherapy. Studies have shown superior signaling phosphoprotein inhibition and antileukemia efficacy \textit{in vivo} when PI3K/mTOR inhibitors are used in combination with tyrosine kinase inhibitors in models of Philadelphia chromosome (Ph)-like ALL. (7) A clinical trial investigating everolimus in combination with the CDK4/6 inhibitor ribociclib (NCT03740334) is also underway based on promising preclinical data. Additionally, recent trials in adults have demonstrated the promise of combining small molecule inhibitors with immunotherapy, such as the bispecific CD19-directed antibody blinatumomab, although these approaches may require ongoing assessment of any potential impact of the targeted agents on T-cell function. (8, 9)

Although the numbers are small, the responses in three of five patients with relapsed T-ALL on this trial is notable as there is a particularly urgent need for salvage regimens in T-ALL, where that has been a paucity of effective treatment options relative to B-ALL. Another potential role for mTOR inhibitors is as a potentially less toxic bridge to HSCT or CAR T-cell therapy. In the multiply relapsed setting, where achieving an MRD-negative complete remission can be challenging, mTOR inhibitors could have a potential role as part of a cytoreductive strategy, which could be followed by immunotherapy (e.g., CAR
T-cells or blinatumomab/HSCT). Finally, this regimen also is as an option following failure of HSCT or immunotherapy or in cases where there is a lack of target antigen expression for available immunotherapies.

In summary, relapsed ALL remains a challenge and while newer treatments with immunotherapy, CAR-T cells, and advances in HSCT are improving outcomes, this is not without significant treatment-related toxicity and responses to salvage therapy remain unpredictable. Tasion et al. have demonstrated that it is feasible to deliver an mTOR inhibitor in combination with chemotherapy and achieve responses in nearly half of a heavily pretreated patient population, presenting another option to consider as part of a strategy aimed at sustainable cure.
References

Table 1. Early Phase mTOR Inhibitor Trials for Relapsed Pediatric ALL

<table>
<thead>
<tr>
<th>ClinicalTrials.gov identifier</th>
<th>Phase</th>
<th>Major Findings</th>
<th>Treatment Regimen</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT01523977 (10)</td>
<td>I</td>
<td>CR rate 86% Tolerable toxicity</td>
<td>Everolimus plus vincristine, prednisone, pegaspargase and doxorubicin</td>
<td>First relapse B and T-ALL with CR1 > 18 months</td>
</tr>
<tr>
<td>NCT01403415 (6)</td>
<td>I</td>
<td>CR/CRi rate 47% Excessive toxicity</td>
<td>Temsirolimus plus vincristine, dexamethasone, pegaspargase and mitoxantrone</td>
<td>Second or greater relapse B and T-ALL</td>
</tr>
<tr>
<td>NCT01614197 (1)</td>
<td>I</td>
<td>ORR 49% Tolerable toxicity</td>
<td>Temsirolimus plus cyclophosphamide and etoposide</td>
<td>Second or greater relapse or refractory B and T-ALL</td>
</tr>
<tr>
<td>NCT03328104</td>
<td>I</td>
<td>Ongoing</td>
<td>Everolimus plus nelarabine, cyclophosphamide and etoposide</td>
<td>First or greater relapse or refractory T-ALL</td>
</tr>
<tr>
<td>NCT03740334</td>
<td>I</td>
<td>Ongoing</td>
<td>Everolimus plus ribocil and dexamethasone</td>
<td>Second or greater relapse or refractory B and T-ALL</td>
</tr>
</tbody>
</table>

CR: complete response; CRi: complete response with incomplete count recovery; ORR: overall response rate