Decitabine salvage for Tumor Protein P53-mutated, relapsed/refractory acute myeloid leukemia after cytotoxic induction therapy

Received: October 7, 2021.
Accepted: February 21, 2022.

Publisher's Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors’ final approval; the final version of the manuscript will then appear in a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
Decitabine salvage for Tumor Protein P53-mutated, relapsed/refractory acute myeloid leukemia after cytotoxic induction therapy

Francesca Ferraro,1 Agata Gruszczynska,1 Marianna B. Ruzinova,2 Christopher A. Miller,1 Mary Elizabeth Percival,3,4 Geoffrey L. Uy,1 Iskra Pusic,1 Meagan A. Jacoby,1 Mathew J. Christopher,1 Miriam Y. Kim,1 Peter Westervelt,1 Amanda F. Cashen,3 Mark A. Schroeder,1 John F. DiPersio,1 Camille N. Abboud,1 Lukas D. Wartman,1 Feng Gao,5 Daniel C. Link,1 Timothy J. Ley,1 and John S. Welch*1.

1. Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri 63110.

2. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110.

3. Department of Internal Medicine, Division of Hematology, University of Washington School of Medicine, Seattle, Washington 98195.

4. Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109

5. Department of Surgery, Division of Public Health Sciences, Washington University School of Medicine, St. Louis, Missouri 63110.

*Corresponding author:
Washington University School of Medicine
Division of Oncology
660 South Euclid Ave, Campus Box 8007
St. Louis, MO 63110

This manuscript describes results from a single-arm, open-label, prospective clinical trial (NCT03063203) that was approved by the Institutional Review Board at Washington University in St. Louis and registered at Clinicaltrials.gov.

Acknowledgments. The trial was designed and the manuscript written by the first and last authors. The investigators performed the data analysis. Author contributions: F.F. and J.S.W designed, wrote, and oversaw the study. M.E.P., G.L.U., I.P., M.A.J., M.Y.K., P.W., A.F.C., M.A.S., J.F.D., C.N.A., and L.D.W. contributed to clinical enrollment and data analysis. A.G., M.B.R., C.A.M., D.C.L., and T.J.L. contributed to molecular analysis. F.G. contributed to statistical analysis. All authors had access to primary data, reviewed and approved the manuscript.

The study was supported by grants from the Specialized Program of Research Excellence in AML of the National Cancer Institute (P50 CA171963 to Dr. Link), the Genomics of AML Program Project (P01 CA101937, to Dr. Ley), a K12 Program grant (CA167540, to Dr. Ferraro) and by Janssen Pharmaceuticals.

We thank Megan Haney and Jeff King for assistance in patient enrollment, sample collection, and data processing; Sharon Heath, Nicole Helton, and the Tissue Procurement Core for assistance in sample collection and processing; the McDonnell Genome Institute at Washington University in St. Louis for support in sequencing; and Anh Vu for help with mutation manual review.
Data Sharing: dbGaP study ID phs000159

Words: 1459
Figures: 2
Tables: 1
Supplementary Figures: 2
Supplementary Tables: 1
References: 15

Running title: Decitabine in TP53 mutated relapsed/refractory AML

Keywords: TP53, acute myeloid leukemia, decitabine salvage, immunohistochemistry, exome sequencing, allogeneic transplant.
TP53-mutated acute myeloid leukemia (AML) represents a therapeutic challenge due its chemotherapy-refractoriness, and to an uncertain role for hematopoietic cell transplant (HCT) intensification. We initiated a trial to determine whether decitabine might salvage TP53-mutated AML after failure of cytarabine-based induction. Seventeen patients were enrolled before the trial was closed due to slow accrual. Decitabine was well tolerated in this pretreated population and allowed transition to HCT in 7 out of 17 patients (41%). The 1-year OS was 29% (median 244 days, 95% CI 116-390). Survival was longer in patients receiving HCT (median 354 days), and two long-term survivors were transplanted in molecular remission. Detection of TP53 clonal response by bone marrow (BM) immunohistochemistry (IHC) or peripheral blood (PB) exome sequencing was associated with improved survival, suggesting the utility of these secondary endpoints in future clinical trials.

This single-arm, open-label, prospective clinical trial (NCT03063203) was approved by the Institutional Review Board at Washington University in St. Louis. The study enrolled 17 patients between October 2017 and September 2020 before closing due to slow accrual during the SARS-CoV-2 pandemic, and to shifting treatment practices towards the use of venetoclax combinations. Eligible patients had TP53 mutated relapsed/refractory AML following cytarabine-based induction chemotherapy, and at least one of the following: BM blasts >5%, flow-based measurable residual disease (MRD) >0.5%, persistent cytogenetic abnormality by FISH or karyotyping, or persistent TP53 mutation at ≥5% variant allele frequency (VAF) with exome sequencing. Decitabine was administered at 20 mg/m²/day on days 1-10 of 28-day cycles and could be reduced to days 1-5 once BM aspirate blasts were <5%. G-CSF use was allowed during the treatment of sepsis and neutropenic fevers, but not to support neutrophil recovery.
The primary objective was to determine the 1-year OS in patients with TP53-mutated AML compared to historic controls (1-year OS: 25%)1,3,4. OS was defined from the time of enrollment to death from any cause. Secondary endpoints included determination of: 1) proportion of morphologic responses, as defined by the European LeukemiaNet 2017 (ELN)5; 2) time to transplant and the number of patients able to undergo HCT; 3) 2-year event-free survival after transplant compared to historical controls (18-22%)6; and 4) average number of hospital days during cycles 1-2, as a surrogate of toxicity.

The average time from the initiation of induction chemotherapy to trial enrollment was 42 days (median 25 days), consistent with primary refractory disease, persistent MRD, or rapid relapses after induction chemotherapy (Table 1). Performance status was 0 or 1 in 16 out of 17 patients, reflecting a population that had been fit for cytotoxic chemotherapy (Table 1).

Sixteen of the 17 patients had complex cytogenetics and 9 of 17 had cytogenetic loss of chromosome 17p (Table S1). As expected in relapsed/refractory AML and TP53 mutated AML, BM aspirates were commonly hypoplastic 7, with a blast count mean of 18% at trial enrollment and of 37% at diagnosis. The mean number of hospital days during combined cycles 1 and 2 was 21 (median 14, Table S1), including the inpatient decitabine administration days. Observed grade 3-4 SAEs reflected typical complications associated with decitabine therapy, including anemia (1), febrile neutropenia (6), heart failure (1), gastrointestinal pain (1), infections (2), abnormal LFTs (2), troponin elevation (1), lymphopenia (6), neutropenia (6), thrombocytopenia (4), acidosis (1), hyperglycemia (2), electrolyte imbalance (2), acute kidney injury (2), dyspnea (1), respiratory failure (3), hypertension (1), and hypotension (1).
The median survival was 244 days (95% CI 116-390, Table 1 and Figure 1A). Twelve patients died within 1 year of presentation, providing a 29% 1-year OS. An interim analysis noted 27% predictive power to reject the null hypothesis if the study were to include 60 patients (calculated using PASS v.15.0.5). All non-transplanted patients eventually relapsed and died of disease progression. Seven patients underwent HCT, at a mean of 106 days (median 117 days, Table S1). Three patients died in remission from complications of transplantation, 2 died after relapse/progression (Table S1). Two patients remain alive at 26 and 18 months; both were transplanted in molecular remission. Overall, HCT was associated with longer survivals (median 354 days, Figure 1B). No patient achieved a complete morphologic response by ELN criteria. (Table 1). Robust neutrophil recovery was not noted, though G-CSF was not used to treat asymptomatic neutropenia. Five patients displayed platelet counts normalization (Figure 1C).

BM and PB samples were collected at enrollment (day 0) and at the end of cycles 1, 2, and 3. For 16 patients, samples at AML diagnosis (pre-induction) were also available for correlative studies. TP53 IHC (antibody clone DO7) was performed on 4 µm BM sections using the Benchmark XT automated stainer (Ventana Medical Systems, Tucson, AZ, USA). Quantitative scoring was performed on nuclear staining in 500 hematopoietic cells. Based on published cutoffs, IHC response was defined as a reduction of TP53+ cells to <10% of total cells on a core biopsy sample.

Many TP53 missense mutations are associated with IHC-detectable TP53, via protein stabilization. TP53 IHC showed staining in all cases with TP53 missense mutations; however, 3 of 4 cases with nonsense mutations did not have detectable TP53 by IHC (R213*,
Y107*, F54Sfs*69; Figure S1A-C). Unexpectedly, the C-terminal nonsense mutation (R342*) led to elevated TP53 protein at three separate time points (Figure S1D). TP53 IHC protein levels correlated between pre-induction and day 0 ($R^2 = 0.56$). Only two cases (WUDAC015 and WUDAC021) were associated with a significant reduction of TP53 IHC staining after cytotoxic induction therapy, confirming the limited efficacy of standard induction in this cohort (Figure S1E-F). Serial assessment of response by IHC noted 8 patients with responses (Figure 2A), and 5 patients without responses (Figure 2B). Four patients could not be evaluated: 3 had nonsense variants (WUDAC001, WUDAC002, and WUDAC029, Figures S1A-C), and one (WUDAC014) had del17p, all resulting in absent IHC-TP53 staining.

Exome sequencing was performed in parallel using PB samples to circumvent sampling variation due to hemodilute collections in this hypocellular disease (Table S1). Exome capture utilized an IDT exome reagent, and was resolved on an Illumina NovaSeq S4 300XP to a median depth of 200x for pre-induction and day 0 samples, and 148x (range 76 – 200x) for other timepoints. This provided >100x coverage for >90% of targets in 61/67 samples. Molecular response was defined as a reduction in the copy number adjusted TP53 to a VAF of <0.0512. The computational pipeline is available at https://github.com/genome/analysis-workflows/blob/968d7d80c3cec865c7fa58b4dc24561a4dbfd9ad/definitions/pipelines/somatic_exome.cwl. Mutation burden assessment at day 0 and at pre-induction showed correlation ($R^2 = 0.8$). Eight patients achieved a molecular response, and 7 patients displayed persistence of TP53 mutations after therapy (Figure 2C-D). For one patient (WUDAC016), no follow-up PB samples were available (Figure S1G).
The absolute TP53 tumor burden quantified by BM IHC, either at pre-induction or at day 0, did not consistently correlate with PB exome results ($R^2 = 0.15$ and 0.27, respectively). However, qualitative response trends were concordant in 11/16 evaluable patients (Figures S1D-F and Figure S1H-O). One case (WUDAC005, Figure S1P) showed stable disease by TP53 IHC, but progressive disease by PB exome sequencing, suggesting peripheralization of AML cells during therapy.

Exome analyses revealed that the global molecular and clinical response was dictated by the TP53 clonal response trend (Figure S2). Discordance between the TP53 clone and an alternate clone was only observed in WUDAC001, who progressed with a different clone during TP53 clonal response.

Survival outcomes were longer in patients with molecular responses identified by TP53 IHC (median OS 345 vs 116 days, $p < 0.002$, Figure 2E) or by exome sequencing (median OS 390 vs 165 days, $p < 0.001$, Figure 2F). These results are consistent with data from other studies, and suggest that IHC and exome sequencing could be useful adjunctive strategies to quantify responses in future clinical trials. However, each approach has limitations: IHC is applicable only to cases with mutations that stabilize TP53 protein (typically missense variants) and lacks specificity below tumor burden of 10%, due to background staining that occurs in a small number of non-malignant cells. Sequencing of PB samples qualitatively reflected the measurement of TP53 levels in the BM in this study, however this approach is affected by the proportion of circulating malignant cells.
TP53-mutated AML has dismal outcomes and is commonly associated with chemotherapy resistance. Although we found that decitabine is tolerated after intensive chemotherapy, and that molecular responses are achievable in a subset of relapsed/refractory TP53 patients, long-term survival remained poor. These results are consistent with prior studies reporting lower responses to decitabine in relapsed/refractory disease vs. untreated cases14,15. Therefore, novel therapies, upfront combination and consolidation strategies should be considered. The hypoplastic BM in many patients makes accurate response determination challenging, due to hemodilute aspirate collections. The integration of molecular endpoints into clinical trials may improve response quantification, and increase the ability to identify significant differences between treatment arms.

References

Table 1. Clinical Characteristics and Treatment Responses

<table>
<thead>
<tr>
<th>Variable</th>
<th>Level</th>
<th>N=17</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>F</td>
<td>6</td>
<td>35.3%</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>11</td>
<td>64.7%</td>
</tr>
<tr>
<td>Age in years (range)</td>
<td>Median</td>
<td>61 (43-74)</td>
<td></td>
</tr>
<tr>
<td>ECOG Performance Status</td>
<td>0</td>
<td>4</td>
<td>23.5%</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>12</td>
<td>70.5%</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>6%</td>
</tr>
<tr>
<td>Days from Induction to Enrollment (range)</td>
<td>Median</td>
<td>25 (16-176)</td>
<td></td>
</tr>
<tr>
<td>Induction chemotherapy</td>
<td>7+3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vyxeos (CPX-351)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FLAG</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1-year OS</td>
<td>died before 1 year</td>
<td>12</td>
<td>71%</td>
</tr>
<tr>
<td></td>
<td>survived > 1 yr</td>
<td>5</td>
<td>29%</td>
</tr>
<tr>
<td>Transplant (day of treatment) (N=7)</td>
<td>Median</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>Survival post transplant (days)</td>
<td>Median</td>
<td>254</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>236</td>
<td></td>
</tr>
<tr>
<td>ELN responses</td>
<td>CRi</td>
<td>5</td>
<td>29.4%</td>
</tr>
<tr>
<td></td>
<td>mLFS</td>
<td>1</td>
<td>5.9%</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>6</td>
<td>35.3%</td>
</tr>
<tr>
<td></td>
<td>PD</td>
<td>2</td>
<td>11.8%</td>
</tr>
<tr>
<td></td>
<td>NA</td>
<td>3</td>
<td>17.6%</td>
</tr>
</tbody>
</table>

Table 1 Legend. 7+3: 7 days cytarabine, 3 days anthracycline. FLAG: fludarabine, cytarabine, idarubicin and granulocyte-colony stimulating factor
CRi: complete remission with incomplete count recovery; mLFS: morphologic leukemia free state; SD: stable disease; PD: progressive disease; NA: not possible to evaluate.
Figure Legends

Figure 1. Summary of clinical responses. A. Kaplan-Meier curve describing the overall survival of the 17 patients enrolled in the trial (Median survival: 244 days, 95% CI 116-390 days). B. Kaplan-Meier curve describing the overall survival of the 7 transplanted patients (median survival: 354 days). C. Line plots showing the platelet count trends at different timepoints for the 17 the patients enrolled in the study. On the right side of the plot are separately displayed five patients (003, 016, 019, 024 and 029) with platelet recovery.

Figure 2. Molecular responses trends and their association with overall survival. A and B. Line plots showing the % TP53 positive bone marrow cells by IHC at different time points of response assessment for: responder cases (IHC TP53 < 10% reduction during therapy) versus non-responder cases (IHC TP53 > 10% during therapy). C and D. Line plots of TP53 VAF during therapy for responder cases (E. reduction of copy number adjusted TP53 VAF below 0.05%) versus non-responder cases (F. VAF stable or progressing over time). E. Overall survival curves of the 17 cases stratified by responses assessed with IHC (median OS 345 vs 116 days, p < 0.002). F. Overall survival stratified by responses assessed with exome sequencing (median OS 390 vs 165 days, p < 0.001).
Figure 1.

A. All patients

B. Transplanted patients

C. Platelets

Stable pltvs vs plt recovery

- 016: SD
- 019: NA
- 003: CRi
- 024: CRi
- 029: SD
Figure 2.

A. IHC responders

B. IHC non-responders

C. VAF responders

D. VAF non-responders

E. IHC response

F. TP53 Mutation Response

- IHC Responder
- IHC Non-responder

- VAF Responder
- VAF Non-responder

p < 0.002

p < 0.001

Days

Probability of Survival

0 200 400 600 800
Online Supplementary Material Legends

Online Supplementary Figure 1. Line plots showing the changes over the treatment course of %TP53 positive bone marrow cells with IHC (gray line and left y-axis) compared to TP53 adjusted VAF determined with exome sequencing (black line and right y-axis). Of note, A-C are cases with negative IHC staining due to TP53 nonsense mutation (resulting in premature truncation and absent IHC staining). D. WUDAC020 presented with a nonsense mutation (R342*) that resulted in increased TP53 staining by IHC. E and F represent two cases (WUDAC015 and 021) with a significant decrease in molecular tumor burden noted after induction chemotherapy and before enrollment in the trial. G. WUDAC016 is a case for which no follow up blood samples were available for longitudinal exome response assessment (no VAF comparison available).

Online Supplementary Figure 2. Line plots showing exome results and subclonal architecture for each case during treatment. TP53 mutations in each graph are indicated by the red line. Other variants are in grey. Note that WUDAC014 does not have a TP53 mutation, but was enrolled based on TP53 deletion detected by FISH.

Online Supplementary Table on Excel file. Subtab 1 contains additional clinical data for the subjects enrolled in the trial. Subtab 2 shows the cytogenetic studies results for the subjects enrolled in the trial during the course of treatment. Subtab 3 lists additional somatic mutations that were used to track the clonal response along with the TP53 clone.
Supplemental Figure 1.
Supplemental Figure 2.

Other mutations

TP53

Alternative clones

Subclones

Pre-Induction

Day 0

C1D28

C2D28

C3D28

Progression

WUDAC003

VAF

Pre-induction

Baseline

C1D28

C2D28

C3D28

Progression

WUDAC002

VAF

Pre-induction

Baseline

C1D28

C2D28

C3D28

Progression

WUDAC008

VAF

Pre-induction

Baseline

C1D28

C2D28

C3D28

Progression

WUDAC013

VAF

Pre-induction

Baseline

C1D28

C2D28

C3D28

Progression

WUDAC019

VAF

Pre-induction

Baseline

C1D28

C2D28

C3D28

Progression

WUDAC020

VAF

Pre-induction

Baseline

C1D28

C2D28

C3D28

Progression

WUDAC024

VAF

Pre-induction

Baseline

C1D28

C2D28

C3D28

Progression

WUDAC029