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Machine Learning Pipeline 

 

To enable a customizable and reusable technological approach and to achieve optimal results, 

we designed a data-driven software platform. The embedded, automated ML pipeline 

integrates state-of-the-art software technology for data management, feature transformation, 

ML models and training algorithms and use-case specification (such as specific result 

exports), and consists of five subsequent steps, which were executed in an iterative manner to 

approach step-wisely the optimal configuration. 1. Data import & modeling: data from 

different sources were aggregated and stored in a MySQL (Oracle, Austin, Texas, USA) 

database, allowing efficient data access and format alignment. In that way, pooled data from 

the above-mentioned clinical trials and the SAL patient registry were collected and 212 

multimodal variables (clinical data, laboratory parameters as well as molecular and 

cytogenetic genetic data) became available (see Tab. S4 for a full list of variables used in the 

model). 2. Model enhancement: Relevant attributes were selected by domain experts 

(physicians) and dimensionality was reduced by excluding sparse features (cut-off 1%). This 

way, redundancies were removed and the risk of collinearities and overfitting was reduced.  3. 

Data transformation: the resulting object graph was transformed in a uniform and robust 

representation for ML models, i.e. as the data included a variety of numerical values with 

different ranges, feature scaling was performed by standardizing numerical values to the z-

score. Nominal and ordinal variables were one-hot encoded. As not all ML models can 

compute missing values and since we aimed to evaluate a variety of ML models for their 

capabilities of predicting CR and 2-year OS, an imputation of missing values was essential 

and thus, integrated. Missing ordinal, discrete and continuous variables were imputed with the 

median of the respective variable. Missing nominal values were labeled ‘unknown’. To 

reduce dimensionality and thereby the risk of overfitting, dynamic feature selection was used, 

i.e. features were selected according to their support by five feature selection metrics: linear 

correlation, chi-square test, recursive feature elimination, lasso regularization and random 



forest ranking. To be included in an ML model, a variable had to pass a pre-determined 

threshold of overall predictive power determined by summing the normalized scores of these 

five feature selection algorithms. Precisely, each single feature selection metric evaluated 

every single feature for its prognostic impact resulting in a score ranging from 0 to 1, where 0 

means no impact on outcome and 1 means high association with outcome. As an example: 

Potentially, a feature could reach a prognostic score of 2.5. That could mean that two feature 

selection metrics gave a score of 1, one metric gave 0.4, one metric 0.1 and finally the last 

metric 0. Alternatively, the feature could have been graded with 0.5 from every single feature 

selection metric. Essentially, this resembles a mathematical representation of a Venn diagram 

where the overlap for a single feature between the metrics are expressed numerically ranging 

from 0 – 5 (very low to very high prognostic impact). By using five rather than just one 

feature selection metric and summing the resulting prognostic score we aimed to reduce bias 

introduced by individual algorithms. Subsequently, an automated cut-off was used for 

including the scored features in the classification models. This cut-off was iteratively 

determined by maximizing the average AUROCs of all classification algorithms, i. e. the 

number of features included on the model was determined by cutting off less predictive 

features when the classification algorithms reached their peak performance in the test set. For 

both CR and 2-year OS, this point was achieved at a prognostic score of 0.5. Including 

features below 0.5 again decreased classification performance likely due to introduction of 

random noise. In that way, features of high redundancy or low entropy were automatically 

filtered out. In contrast to upfront regression analysis of all 212 parameters, the proposed ML 

method controls for potential type I and II errors in addition to agnostic and data-driven 

analysis rather than hypothesis-based parameter testing. As multiple testing greatly increases 

type I error rate, especially for such a multidimensional data set, conventional approaches 

require post-hoc correction, e. g. using Bonferroni correction. This would introduce a very 

conservative significance level, especially in the context of 212 variables, which in turn would 



increase the risk for type II errors. By pre-selecting parameters and thereby reducing the 

number of univariate regression models needed for analysis, type I and II error rate are more 

controlled for than with upfront regression analysis for all individual parameters.  4. Machine 

learning classifiers: Applied ML models were Random Forest (RF), Gradient Boosting, 

adaptive Boosting, linear, polynomial and radial basis function kernel (RBF) support vector 

machines (SVM), k-nearest neighbor (KNN), logistic regression (LR) and artificial neural 

nets (ANN). The prepared data from step 1-3 was divided in a training and test set with a ratio 

of 9:1 using stratified randomization and tenfold cross-validation. That means that for each of 

ten iterations the data set is reshuffled and a sample is drawn completely at random where 

90% of patients are allocated to the training set and 10% of patients are allocated to the test 

set. The test set is then strictly withheld from the training data to prevent overfitting of the 

classifiers. Overfitting is the notion that a classifier ‘memorizes’ training data rather than 

learning abstract feature representations derived from the data. This would result in high 

classification performance in the training set and poor performance (low generalizability) in 

the test set or with external data. To prevent this, stratified randomization ensured the 9:1 ratio 

for each single iteration of the tenfold cross-validation. By performing this process over ten 

iterations, the risk of selection bias, i. e. the notion that the patients in the training vs. the test 

set differ substantially e. g. with respect to risk or outcome, is greatly reduced since every 

patient has the chance to be allocated to either training or test set in ten different iterations. By 

introducing a predefined seed for the random generators before each run, reproducibility is 

ensured. Finally, performance for the test set was averaged. All reported performance 

measures are derived from averaged scores of tenfold cross-validation on test sets only. This 

approach enables the ML pipeline within the platform to train different ML models on the 

base of a stable data set, making the results comparable to search for the optimal model and 

configuration. 5. Visualization & analysis: Finally, the ML models’ output is automatically 

visualized and performance can be assessed using a pre-defined cluster of performance 



metrics. This way, both clinicians and ML engineers receive immediate feedback of model 

performance and selected features. 

With the support of hyperparameter optimization, which filters parameters that do not belong 

to the model itself, utilizing Bayesian optimization with Gaussian processes, the entire ML 

pipeline was executed several times, producing an automated documentation for each model 

and configuration. Hyperparameter search was performed using scikit.learn version 0.23.2. 

including model stabilization (https://scikit-

learn.org/stable/modules/model_evaluation.html#common-cases-predefined-values) and 

search space optimization (https://scikit-

optimize.github.io/stable/modules/generated/skopt.space.space.Real.html) using default 

settings. Medical and ML experts collaborated to discuss the intermediate results to refine 

configuration, feature selection and preparation techniques, data transformation and ML 

technology as well as the result representation to optimize the pipeline after each run to 

achieve optimal results for the CR/Cri and OS use case. For external validation, pre-trained 

models were tested on 664 AML patients from the multi-center AML Cooperative Group 

bioregistry. Model building, evaluation and visualization was performed in Python 3.8 

(Python Software Foundation, Fredericksburg, Virginia, USA). Python packages that were 

used are summarized in Tab. S6. 

 

Code availability 

Code that was generated for the purpose of this work is publicly available under 

https://github.com/sit-institute/sal-cr/ 
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trial name clinicaltrials.gov 

identifier 

trial duration protocol summary 

AML96 NCT00180115 1996-2008 risk-adapted 

postremission 

treatment regarding 

allogeneic stem cell 

transplantation for 

high-risk AML and 

related allogeneic and 

autologous stem cell 

transplantation for 

standard-risk AML, 

and randomization 

between intermediate-

dose and high-dose 

cytarabine within the 

first post-remission 

course 

AML2003 NCT00180102 2003-2009 early allogeneic stem 

cell transplantation in 

post-induction aplasia 

for high-risk AML, 

factorial design with 

four therapy arms with 

two factors of two 

stages (intensified vs. 

standard therapy and 

cytarabine vs. 

cytarabine + 

mitoxantrone + 

amsacrin) 

AML60+ NCT00180167 2005-2010 Patients ≥ 60 years, 

mitoxantron on day 

1,2,3 + cytarabine on 

days 1,3,5,7 vs. DA 

7+3  

SORAML NCT00893373 2011-2014 Standard therapy + 

sorafenib vs. standard 

therapy + placebo 

SAL bioregistry NCT03188874 2010-present Prospective registry of 

AML patients 

AMLCG-1999 NCT00266136 1999-2007 double induction with 

HAM-HAM, multiple 

course G-CSF or 

myeloablative 

consolidation with 

Bu/Cy and 

autologous blood 

stem cell 

transplantation 

instead of 

maintenance vs. 

standard therapy 

AMLCG-2008 NCT01382147 2008-2012 S-HAM escalated for 

younger patients and 



S-HAM basis for 

elderly patients vs. 
TAD-HAM (younger) 

or HAM-HAM 

(elderly) 

Table S1. Summary of trial data used for retrospective analysis  

 

 
TruSight Myeloid Sequencing Panel 

ABL1 CEBPA HRAS MYD88 SF3B1 

ASXL1 CSF3R IDH1 NOTCH1 SMC1A 

ATRX CUX1 IDH2 NPM1 SMC3 

BCOR DNMT3A IKZF1 NRAS SRSF2 

BCORL1 ETV6/TEL JAK2 PDGFRA STAG2 

BRAF EZH2 JAK3 PHF6 TET2 

CALR FBXW7 KDM6A PTEN TP53 

CBL FLT3 KIT PTPN11 U2AF1 

CBLB GATA1 KRAS RAD21 WT1 

CBLC GATA2 MLL RUNX1 ZRSR2 

CDKN2A GNAS MPL SETBP1  

 

Table S2. Summary of the 54 genes targeted by the TruSight Myeloid Sequencing Panel (Illumina, San 

Diego, CA, USA).  

 

 Section & Topic No Item 
Reported on 

page # 
 

    
 TITLE OR 

ABSTRACT 

   

  1 Identification as a study of diagnostic accuracy using at least 

one measure of accuracy 

(such as sensitivity, specificity, predictive values, or AUC) 

1 

 ABSTRACT    
  2 Structured summary of study design, methods, results, and 

conclusions  

(for specific guidance, see STARD for Abstracts) 

2 

 INTRODUCTION    
  3 Scientific and clinical background, including the intended use 

and clinical role of the index test 

2-3 

  4 Study objectives and hypotheses 2-3 
 METHODS    
 Study design 5 Whether data collection was planned before the index test and 

reference standard  

were performed (prospective study) or after (retrospective 

study) 

3-4 + 

supplements 

 Participants 6 Eligibility criteria  3-4 
  7 On what basis potentially eligible participants were identified  

(such as symptoms, results from previous tests, inclusion in 

registry) 

3-4 

  8 Where and when potentially eligible participants were identified 

(setting, location and dates) 

3-4 + 

supplements 



  9 Whether participants formed a consecutive, random or 

convenience series 

3-4 +  

supplements 
 Test methods 10a Index test, in sufficient detail to allow replication 4-5 + 

supplements 
  10b Reference standard, in sufficient detail to allow replication n.a. 
  11 Rationale for choosing the reference standard (if alternatives 

exist) 

n.a. 

  12a Definition of and rationale for test positivity cut-offs or result 

categories of the index test, distinguishing pre-specified from 

exploratory 

5 + 

supplements 

  12b Definition of and rationale for test positivity cut-offs or result 

categories of the reference standard, distinguishing pre-

specified from exploratory 

n.a. 

  13a Whether clinical information and reference standard results 

were available to the performers/readers of the index test 

n.a. 

  13b Whether clinical information and index test results were 

available  

to the assessors of the reference standard 

n.a. 

 Analysis 14 Methods for estimating or comparing measures of diagnostic 

accuracy 

5 

  15 How indeterminate index test or reference standard results were 

handled 

Supplements 

  16 How missing data on the index test and reference standard were 

handled 

supplements 

  17 Any analyses of variability in diagnostic accuracy, 

distinguishing pre-specified from exploratory 

supplements 

  18 Intended sample size and how it was determined n.a. 
 RESULTS    
 Participants 19 Flow of participants, using a diagram Figure 1 
  20 Baseline demographic and clinical characteristics of participants Table 1 + 

Table S4-S5 
  21a Distribution of severity of disease in those with the target 

condition 

Table 1 + 

Table S4-S5 
  21b Distribution of alternative diagnoses in those without the target 

condition 

n.a. 

  22 Time interval and any clinical interventions between index test 

and reference standard 

n.a. 

 Test results 23 Cross tabulation of the index test results (or their distribution)  

by the results of the reference standard 

n.a. 

  24 Estimates of diagnostic accuracy and their precision (such as 

95% confidence intervals) 

6-9, Figure 2, 

Figure 4-6 
  25 Any adverse events from performing the index test or the 

reference standard 

n.a. 

 DISCUSSION    
  26 Study limitations, including sources of potential bias, statistical 

uncertainty, and generalisability 

13-14 

  27 Implications for practice, including the intended use and clinical 

role of the index test 

12-14 

 OTHER 

INFORMATION 

   

  28 Registration number and name of registry 3 
  29 Where the full study protocol can be accessed n.a. 
  30 Sources of funding and other support; role of funders 15 
     

Table S3. STARD checklist 

 



 

Variable 

SAL 

(training and testing) 

AMLCG 

(external validation) 

 n % n % 

clinical      

age   
  

height   
  

weight   
  

sex   
  

AML type, de novo 1180 85.32% 570 85.84% 

AML type, secondary 146 10.56% 59 8.89% 

AML type, therapy-related 40 2.89% 35 5.27% 

extramedullary disease 202 14.61% 16/270 5.93% 

Fever during induction phase 361 26.10% n.a.  

laboratory values   
  

hemoglobin   
  

white blood cell count   
  

platelet count   
  

bone marrow blast count   
  

peripheral blood blast count   
  

fibrinogen level   
  

LDH level   
  

molecular genetics   
  

ASXL1 124 8.97% 73 10.99% 

ATRX 3 0.22% n.a.  

BCOR 61 4.41% 46 6.93% 

BCORL1 49 3.54% 15 2.26% 

BRAF 6 0.43% 1 0.15% 

CALR 1 0.07% n.a.  

CBL 27 1.95% 13 1.96% 

CBLB 2 0.14% n.a.  

CDKN2A 3 0.22% 2 0.30% 

CEBPA, monoallelic (TAD) 41 2.96% 8 1.20% 

CEBPA, monoallelic (bZIP) 30 2.17% 11 1.66% 

CEBPA, double-mutated 91 6.58% 27 4.07% 

CSF3R 20 1.45% 13 1.96% 

CUX1 34 2.46% 2 0.30% 

DNMT3A 396 28.63% 211 31.78% 

ETV6 9 0.65% 15 2.26% 

EZH2 53 3.83% 28 4.22% 

FBXW7 3 0.22% 2 0.30% 

FLT3-ITD 280 20.25% 178 26.81% 

FLT3-ITD ratio   
  

FLT3-TKD 62 4.48% n.a.  

GATA2 80 5.78% 27 4.01% 

HRAS 2 0.14% 1 0.15% 

IDH1 122 8.82% 45 6.78% 



IDH2 197 14.24% 93 14.01% 

IKZF1 36 2.60% n.a.  

JAK2 18 1.30% 8 1.20% 

KDM6A 9 0.65% 13 1.96% 

KIT 73 5.28% 27 4.07% 

KRAS 79 5.71% 41 6.17% 

MPL 5 0.36% n.a.  

MYD88 2 0.14% n.a.  

NOTCH1 24 1.74% 8 1.20% 

NPM1 466 33.69% 221 33.28% 

NRAS 229 16.56% 144 21.69% 

PDGFRA 1 0.07% n.a.  

PHF6 41 2.96% 16 2.41% 

PTEN 3 0.22% 1 0.15% 

PTPN11 100 7.23% 68 10.24% 

RAD21 50 3.62% 37 5.57% 

RUNX1 134 9.69% 102 15.36% 

SETBP1 7 0.51% 3 0.45% 

SF3B1 41 2.96% 23 3.46% 

SMC1A 22 1.59% 17 2.56% 

SMC3 18 1.30% 23 3.46% 

SRSF2 72 5.21% 65 9.79% 

STAG2 71 5.13% 44 6.63% 

TET2 247 17.86% 102 15.36% 

TP53 102 7.38% 63 9.49% 

U2AF1 36 2.60% 27 4.07% 

WT1 102 7.38% 86 12.95% 

ZRSR2 19 1.37% 5 0.75% 

cytogenetics   
  

Karyotype, complex 152 10.99% 75 11.29% 

Karyotype, neither normal nor 

complex 463 33.48% 259 39.02% 

Karyotype, normal 709 51.27% 330 49.69% 

t(6;9) 5 0.36% 5 0.75% 

t(11;19) 1 0.07% n.a.  

abn(3q) 21 1.52% n.a.  

t(1;3) 5 0.36% n.a.  

t(3;21) 4 0.29% n.a.  

t(2;3) 1 0.07% n.a.  

del(3q) 5 0.36% n.a.  

add(3q) 2 0.14% n.a.  

t(3;4;3) 1 0.07% n.a.  

t(3;8) 1 0.07% n.a.  

t(3;6) 1 0.07% n.a.  

t(3;7) 1 0.07% n.a.  

add(7q) 1 0.07% n.a.  

del(7q) 18 1.30% 36 5.42% 



+8 79 5.71% n.a.  

-Y 14 1.01% n.a.  

del(9q) 12 0.87% n.a.  

del(20q) 5 0.36% n.a.  

inv(3) 7 0.51% 13 1.96% 

-5 7 0.51% n.a.  

del(5q) 44 3.18% 54 8.13% 

-7 33 2.39% n.a.  

-17 2 0.14% n.a.  

t(v;11)(v;q23) 13 0.94% n.a.  

add(11q23) 1 0.07% n.a.  

t(6;11) 1 0.07% n.a.  

t(10;11) 2 0.14% n.a.  

t(1;11) 1 0.07% n.a.  

t(11;17) 1 0.07% n.a.  

inv(11) 2 0.14% n.a.  

t(5;11) 1 0.07% n.a.  

t(9;10;11) 1 0.07% n.a.  

t(3;11;15) 1 0.07% n.a.  

abn(17p) 6 0.43% n.a.  

add(17p) 1 0.07% n.a.  

del(17p) 32 2.31% 39 5.87% 

inv(16) 58 4.19% 18 2.71% 

del(9p) 1 0.07% n.a.  

del(11q) 6 0.43% n.a.  

del(12p) 4 0.29% n.a.  

del(16q) 4 0.29% n.a.  

del(10p) 3 0.22% n.a.  

del(21q) 1 0.07% n.a.  

del(6q) 1 0.07% n.a.  

del(17q) 2 0.14% n.a.  

del(1p) 2 0.14% n.a.  

del(15q) 1 0.07% n.a.  

del(13q) 2 0.14% n.a.  

del(1q) 1 0.07% n.a.  

del(3p) 1 0.07% n.a.  

del(4q) 1 0.07% n.a.  

-22 1 0.07% n.a.  

-13 2 0.14% n.a.  

-18 2 0.14% n.a.  

-X 5 0.36% n.a.  

-15 1 0.07% n.a.  

add(20p) 1 0.07% n.a.  

add(18q) 1 0.07% n.a.  

add(12p) 2 0.14% n.a.  

add(14q) 2 0.14% n.a.  

add(9p) 1 0.07% n.a.  



add(15q) 1 0.07% n.a.  

add(19p) 1 0.07% n.a.  

add(21q) 2 0.14% n.a.  

add(8q) 1 0.07% n.a.  

add(22q) 1 0.07% n.a.  

add(17q) 1 0.07% n.a.  

+6 3 0.22% n.a.  

+11 9 0.65% n.a.  

+9 3 0.22% n.a.  

+14 3 0.22% n.a.  

+4 10 0.72% n.a.  

+19 6 0.43% n.a.  

+13 10 0.72% n.a.  

+22 20 1.45% n.a.  

+21 14 1.01% n.a.  

+1 1 0.07% n.a.  

+5 2 0.14% n.a.  

+12 1 0.07% n.a.  

+7 1 0.07% n.a.  

+10 2 0.14% n.a.  

+X 1 0.07% n.a.  

+Y 3 0.22% n.a.  

+15 1 0.07% n.a.  

+20 2 0.14% n.a.  

+23 1 0.07% n.a.  

+3 1 0.07% n.a.  

+r 2 0.14% n.a.  

mar 13 0.94% n.a.  

XXYY 1 0.07% n.a.  

dup(21)(q22q22) 1 0.07% n.a.  

dup(17)(q21q25) 1 0.07% n.a.  

dup(8) 1 0.07% n.a.  

t(9;11) 20 1.45% 17 2.56% 

t(4;14)(q11;q32) 1 0.07% n.a.  

t(8;9) 2 0.14% n.a.  

t(5;18)(q35;q21) 1 0.07% n.a.  

t(16;16) 18 1.30% 2 0,3% 

t(9;21) 2 0.14% n.a.  

t(4;21)(q11;q11) 1 0.07% n.a.  

t(1;4)(q25;q12) 1 0.07% n.a.  

t(3;5) 4 0.29% n.a.  

t(8;11) 1 0.07% n.a.  

t(2;15) 1 0.07% n.a.  

t(7;14) 1 0.07% n.a.  

t(7;9) 1 0.07% n.a.  

t(6;12) 1 0.07% n.a.  

t(2;14) 2 0.14% n.a.  



t(5;21) 1 0.07% n.a.  

t(7;11) 2 0.14% n.a.  

t(7;21) 1 0.07% n.a.  

t(3;11) 1 0.07% n.a.  

t(13;21) 1 0.07% n.a.  

t(1;17) 1 0.07% n.a.  

t(5;9) 1 0.07% n.a.  

t(10;11) 1 0.07% n.a.  

t(8;21) 52 3.76% 26 3.92% 

t(12;22) 1 0.07% n.a.  

t(4;22) 1 0.07% n.a.  

t(1;8;16) 1 0.07% n.a.  

t(2;5;10) 1 0.07% n.a.  

t(7;12;12) 1 0.07% n.a.  

ins(21) 1 0.07% n.a.  

i(17)(q10) 6 0.43% n.a.  

i(22)(q10) 1 0.07% n.a.  

idic(X) 1 0.07% n.a.  

inv(8) 1 0.07% n.a.  

inv(9) 3 0.22% n.a.  

inv(17) 1 0.07% n.a.  

inv(10) 1 0.07% n.a.  

inv(11)(1) 1 0.07% n.a.  

der(16)t(1;16) 2 0.14% n.a.  

der(1;7) 1 0.07% n.a.  

der(2)(p23) 1 0.07% n.a.  

der(10) 1 0.07% n.a.  

der(9) 3 0.22% n.a.  

der(19) 1 0.07% n.a.  

der(18) 2 0.14% n.a.  

der(1;14) 1 0.07% n.a.  

der(12) 1 0.07% n.a.  

 

Table S4. Multimodal data including clinical data, laboratory values, molecular genetics and 

cytogenetics were available for dynamic feature selection and subsequent model building.  

 

 

 

 

 

 



 

Variables AML96 AML2003 AML60+ SORAML Validation 

N of patients 943 191 53 196 664 

age, median (IQR) 60 (47 – 67) 48 (39 – 

55) 

69 (66 – 73) 50 (44 – 55) 57 (44 – 

66) 

sex, n (%)      

Female 439 (46.6) 90 (47.1) 33 (62.3) 99 (50.5) 328 (49.4) 

Male 504 (53.4) 101 (52.9) 20 (37.7) 97 (49.5) 336 (50.6) 

AML status, n (%)      

de novo 773 (82.0) 181 (94.8) 49 (92.5) 177 (90.3) 570 (85.8) 

Secondary 123 (13.0) 1 (0.5) 3 (5.7) 14 (7.1) 59 (8.9) 

therapy-associated 31 (3.3) 2 (1.0) 0 (3.0) 5 (2.6) 35 (5.3) 

missing, n (%) 16 (1.7) 7 (3.7) 1 (1.9) 0  

FAB 

classification, n 

(%) 

     

M0 39 (4.1) 2 (1.0) 0 8 (4.1) 35 (5.4) 

M1 201 (21.3) 59 (30.9) 22 (41.5) 44 (22.4) 157 (23.6) 

M2 323 (34.3) 57 (29.8) 20 (37.7) 58 (29.6) 178 (26.8) 

M3 0 0 0 0 0 

M4 169 (17.9) 44 (23.0) 3 (5.7) 32 (16.3) 163 (24.5) 

M5 141 (15.0) 15 (7.9) 2 (3.8) 31 (15.8) 83 (12.5) 

M6 33 (3.5) 5 (2.6) 0 8 (4.1) 19 (2.9) 

M7  6 (0.6) 0 0 0 3 (0.5) 

missing, n (%) 31 (3.3) 9 (4.7) 6 (11.3) 15 (7.7) 26 (3.9) 

ELN2017 category, n 

(%) 

     

Favorable 307 (32.6) 120 (62.8) 17 (32.1) 74 (37.8) 231 (34.8) 

Intermediate 378 (40.1) 41 (21.5) 14 (26.4) 77 (39.3) 166 (25.0) 

Adverse 205 (21.7) 2 (1.0) 1 (1.9) 33 (16.8) 250 (37.7) 

missing, n (%) 53 (5.6) 28 (14.7) 21 (39.6) 12 (6.1) 17 (2.6) 

Complex 

karyotype (≥ 3 

abnormalities), n 

(%) 

122 (12.9) 8 (4.2) 0 22 (11.2) 75 (11.3%) 

missing, n (%) 0 0 0 114 (58.2) 0 

Extramedullary 

disease, n (%) 

181 (19.2) 4 (2.1) 4 (7.5) 12 (6.1) 16 (5.9) 

missing, n (%) 132 (14.0) 3 (1.6) 2 (3.8) 0 379 (57.1) 

WBC, median 

(IQR) in GPt/l 

12.0 (2.9 – 

49.2) 

13.7 (3.3 – 

48.1) 

8.1 (2.2 – 

32.1) 

8.8 (2.4 – 

28.3) 

23.8 (6.4 – 

60.3) 

Hb, median (IQR) 

in mmol/l 

5.7 (4.9 – 

6.5) 

5.7 (4.9 – 

6.6) 

5.7 (5.1 – 

6.3) 

9.0 (8.0 – 

10.3) 

5.6 (5.0 – 

6.3) 

Plt, median (IQR) 

in GPt/l 

51 (28 – 98) 53 (29 – 

96.5) 

49 (30 – 97) 58 (30 – 

110) 

53 (30 – 

102) 

LDH, median 

(IQR) in U/l 

408 (254 – 

745) 

463 (283 – 

827) 

409 (251 – 

698) 

354 (221 – 

527) 

466 (291 – 

787) 

BM blasts, median 

(IQR) in % 

61 (42 – 78) 60.5 (37 – 

78.5) 

56 (35 – 

76.5) 

63 (42 – 80) 80 (58 – 

90) 



PB blasts, median 

(IQR) in % 

30 (7 – 67) 27 (6 – 64) 20 (2 – 57.5) 20 (4 – 57) 23 (4.5 – 

67) 

Achieved CR after 

induction therapy, 

n (%) 

610 (64.7) 182 (95.3) 46 (86.8) 170 (86.7) 445 (67.0) 

Median OS 

(months) 

12.2 41.4 9.4 17.1 17.3 

OS ≥ 2 years, n (%) 335 (35.5) 134 (70.2) 17 (32.1) 124 (63.3) 290 (43.7) 

Table S5. Baseline patient characteristics according to individual trials used in training and 

testing as well as external validation. FAB: French-American-British Classification; ELN2017: 

European Leukemia Net 2017; WBC: white blood cell count; Hb: hemoglobin; Plt: platelet count; BM: 

bone marrow; OS: overall survival; PB: peripheral blood; CR: complete remission; n/N: number; IQR: 

interquartile range; n.a. – not available 

 

 

 
package version 

click  7.1.2 

coverage  5.3 

flake8  3.8.4 

matplotlib  3.3.2 

missingno  0.4.2 

numpy  1.18.5 

numpydoc  1.1.0 

pandas  1.1.4 

pytablewriter  0.58.0 

python-dotenv  0.15.0 

scikit-learn  0.23.2 

seaborn  0.11.0 

sklearn-pandas  2.0.2 

Sphinx  3.3.0 

sphinx-rtd-theme  0.5.0 

PyYAML  5.3.1 

xgboost  1.2.1 

yellowbrick  1.2 

imbalanced-learn  0.7.0 

sphinxcontrib-images  0.9.2 

scikit-optimize  0.8.1 

tune-sklearn  0.1.0 

ray[tune]  1.0.1. 

 

Table S6. Python packages used for model building 

 

 

 

 

 

 

 



 
Figure S1 Convergence plot for prediction of complete remission (CR). Logistic regression (A) 

and Random Forest (B) were selected for hyperparameter tuning for CR classification. Both converged 

over 1000 iterations achieving a final F1-score of 0.7411 (A) and 0.7831 (B), respectively.  

 

 

Figure S2 Convergence plot for prediction of overall survival (OS). Logistic regression (A) and 

Random Forest (B) were selected for hyperparameter tuning for classification of OS above 24 months. 

Both converged over 1000 iterations achieving a final F1-score of 0.6706 (A) and 0.6815 (B), 

respectively.  

 

 



 



Figure S3 Adjusted odds ratios for continuous variables regarding prediction of complete 

remission (CR). (A) Age ranged between 18 and 84 years. Increasing age was significantly associated 

with decreased odds for achieving CR with intensive induction therapy. (B) Increased hemoglobin 

(until normal values) was associated with increased odds of achieving CR. For molecular genetics 

associated with CR such as ASXL1 (C), IKZF1 (D), SF3B1 (E), U2AF1 (F), TP53 (G), higher variant 

allele fraction (VAF) was associated with decreased CR rates. For biallelic CEBPA mutations and 

CEBPA-bZIP, VAF was not available for analysis.  

 

 



 

 Figure S4 Adjusted odds ratios for continuous variables regarding prediction of overall survival 

≥ 2 years. (A) Age ranged between 18 and 84 years. Increasing age was significantly associated with 

decreased odds for survival for 2 years or longer. (B) Increased hemoglobin (until normal values) was 

associated with increased odds of surviving 2 years or longer. An increase in white blood cell count 

(C), peripheral blood blast count (D) and serum lactate dehydrogenase (E) was associated with 

decreased odds of survival.  

 

 



 

Figure S5 Adjusted odds ratios for continuous variables regarding prediction of overall survival 

≥ 2 years. For molecular genetics associated with overall survival (OS) ≥ 2 years such as ASXL1 (A), 

DNMT3A (B), SF3B1 (C), U2AF1 (D), TP53 (E), higher variant allele fraction (VAF) was associated 

with decreased rates of 2-year OS. For biallelic CEBPA mutations and CEBPA-bZIP, VAF was not 

available for analysis. 

 



 

Figure S6 Performance of pre-trained machine learning models for prediction of CR/CRi 

on external data. The previously trained machine learning models were tested on external 

multi-center data encompassing 664 AML patients from the bioregistry of the AML 

Cooperative Group. ANN – artificial neural net; CR: complete remission; CRi: complete 

remission with incomplete hematologic recovery; FPR – false positive rate; KNN – k nearest 

neighbor; LR – logistic regression; pSVM – polynomial support vector machine; RBF-SVM – 

radial basis kernel function support vector machine; RF – random forest; SVM – (linear) 

support vector machine; TPR – true positive rate. 

 



 

Figure S7 Performance of pre-trained machine learning models for prediction of 2-year 

overall survival on external data. The previously trained machine learning models were tested 

on external multi-center data encompassing 664 AML patients from the bioregistry of the AML 

Cooperative Group. ANN – artificial neural net; CR: complete remission; CRi: complete 

remission with incomplete hematologic recovery; FPR – false positive rate; KNN – k nearest 

neighbor; LR – logistic regression; pSVM – polynomial support vector machine; RBF-SVM – 

radial basis kernel function support vector machine; RF – random forest; SVM – (linear) 

support vector machine; TPR – true positive rate. 

 


