One and a half million hematopoietic stem cell transplants: continuous and differential improvement in worldwide access with the use of non-identical family donors

1University of Leipzig, Germany; 2Aichi Medical University School of Medicine, Nagakute, Japan; 3Lithuanian University of Health Sciences, Kaunas, Lithuania; 4The Worldwide Network of Blood and Marrow Transplantation (WBMT) Transplant Activity Survey Office, University Hospital, Basel, Switzerland; 5African Blood and Marrow Transplantation Group – AfBMT, Bern, Switzerland; 6University of Benin Teaching Hospital, Benin, Nigeria; 7CIBMTR (Center for International Blood and Marrow Transplant Research), National Marrow Donor Program/Be The Match, Minneapolis, MN, USA; 8The Eastern Mediterranean Blood and Marrow Transplant Group (EMBMT), King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia; 9Oncology Center King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia; 10European Society for Blood and Marrow Transplantation (EBMT), Barcelona, Spain; 11Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Regensburg, Regensburg, Germany; 12Department of Pediatric Oncology and Stem Cell Transplantation Unit, Cairo University, Cairo, Egypt; 13Latin American Blood and Marrow Transplantation Group – LABMT, Bern, Switzerland; 14Cristóbal Frutos, Instituto de Previsión Social, Asunción, Paraguay; 15Sebastian Galeano, Hospital Británico, Montevideo, Uruguay; 16Australasian Bone Marrow Transplant Recipient Registry (ABMTRR), St. Vincent’s Hospital Sydney, Sydney, New South Wales, Australia; 17St. Vincent’s Health Network, Kinghorn Cancer Center, Sydney, New South Wales, Australia; 18Pediatric Cell Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran; 19Sheikh Shakhbout Medical City, Abu Dhabi, UAE; 20MAYO Clinic, Rochester, MN, USA; 21The Asia Pacific Blood and Marrow Transplant Group (APBMT), Aichi Medical University School of Medicine, Nagakute, Japan; 22Singapura General Hospital Singapura, Singapore; 23CIBMTR, Medical College of Wisconsin, Milwaukee, WI, USA; 24Aichi Medical University School of Medicine, Department of Promotion for Blood and Marrow Plantation, Nagakute, Japan; 25Fundación Favaloro, Sanatorio Anchorena, ITAC, Buenos Aires, Argentina; 26Instituto de Cancerología-Clinica Las Américas, Medellin, Colombia; 27Department of Stem Cell Transplantation, University Medical Center Hamburg, Hamburg, Germany; 28Saint-Louis Hospital, 1 avenue Claude Vellefaux, Paris, France; 29Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea; 30FUNDALEU, Buenos Aires, Argentina; 31Klinik für Hämatologie, Universitätsspitale Basel, Basel, Switzerland; 32Cancercare Manitoba and the University of Manitoba and Cell Therapy Transplant Canada (CTTC), Winnipeg, Manitoba, Canada; 33Pediatric Department, Hospital Samaritano, Sao Paulo, Brazil; 34Department of Hematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK; 35Christian Medical College, Vellore, India; 36Peter MacCallum Cancer Center and Royal Melbourne Hospital, Parkville, Victoria, Australia; 37University of Minnesota, Minneapolis, MN, USA; 38Medical University of Vienna, Department of Blood Group Serology and Transfusion Medicine, Vienna, Austria; 39Infection and Immunity Clinical Academic Group St George’s Hospital and Medical School, London, UK; 40Academic Cell Therapy Facility and Programme Health Sciences Authority Singapore, Singapore; 41King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; 42Medical University of Graz, Division of Hematology, Graz, Austria; 43Japanese Data Center for Hematopoietic Cell Transplantation (JDCHCT), Nagoya, Japan

©2022 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2021.279189

Received: May 13, 2021.
Accepted: July 21, 2021.
Pre-published: August 12, 2021.
Correspondence: DIETGER NIEDERWIESER - dietger.niederwieser@medizin.uni-leipzig.de
Methods

Participating HCT Teams, Groups, Countries and Continents

Data were provided by the Australasian Bone Marrow Transplant Recipient Registry ABMTRR (www.abmtrr.org), the African Blood and Marrow Transplant Group (AFBMT), the Asian Pacific Blood and Marrow Transplant Group (APBMT: www.apbmt.org), the Cell Therapy Transplant Canada (CTTC: www.cttcanada.org), the Center for International Blood and Marrow Transplantation (CIBMTR: www.cibmtr.org), the Eastern Mediterranean Blood and Marrow Transplant Group (EMBMT: www.embmt.org), the European Society for Blood and Marrow Transplantation (EBMT: www.ebmt.org) and the Latin American Bone Marrow Transplantation Group (LABMT: LABMT@wbmt.org).

Definitions

Transplant rates (TRs) were computed as the number of HCT per 10 million inhabitants not corrected for population age. Population data for non-European countries were obtained from the World Bank (https://databank.worldbank.org/data/indicator/SP.POP.TOTL/1ff4a498/Popular-Indicators) and for the European Countries from Eurostats (http://appsso.eurostat.ec.europa.eu). We assessed patients by donor type (allogeneic or autologous HSCT), stem cell source (bone marrow, peripheral blood stem cells, or cord blood) and indication including stage of the disease (according to https://www.ebmt.org/ebmt/documents/dismclfdd-list-disease-classifications). There was no adjustment for patients who crossed borders and received their HCT in a foreign country. We computed Team Density (TD) for each country as the number of teams per 10 million inhabitants in 2016.

Unrelated donor transplants include HCT from matched or mismatched unrelated donors with peripheral blood and bone marrow as a stem cell source, but not cord blood (CB) HCT. Haploidentical transplants are being described as derived from family donor member with ≥2
loci mismatches within the loci HLA-A,-B,-C,-DRB1 and -DQB1 in GvH and/or HvG direction. Other family donors are those related donors that are mismatched to a lesser degree. For the purpose of analysis we add the small number of “other family donor” to haploidentical donor HCT naming them related mismatch.
Legend to suppl. Figures

Suppl. Figure S1: Total, autologous and allogeneic HCT worldwide from 1957 to 2016 and projected until 2019 (dotted line)

Suppl. Figure S2: Total HCT numbers collected from 2006 until 2016 (n= 697,934) divided by donor type (autologous and allogeneic) and indications

Suppl Figure S3: Total HCT per year, number of HCT teams and HCTs per teams from 2006 – 2016

Suppl. Figure S4: Trends of allogeneic (A) and autologous (B) HCT according to disease indication and disease remission status from 2006 to 2016 (EUR, Europe; EMR, East Mediterranean Region; AFR, Africa; SEAR/WPR, South East Asia Region/ Western Pacific Region)

Suppl. Figure S5: Increase in allogeneic HCT according to donor type (related, unrelated, related identical, related mismatched/haploidentical and unrelated cord blood).
suppl. Figure S1
suppl. Figure S3
Suppl. Figure S5

The figure shows the trend of hematopoietic cell transplantation (HCT) over the years from 2006 to 2016, categorized by different types of donors:

- **Related**
- **Unrelated**
- **Related Identical**
- **Related Mismatched**
- **Unrelated Cord Blood**

The y-axis represents the number of HCTs (n), while the x-axis represents the years from 2006 to 2016.