One and a half million hematopoietic stem cell transplants: continuous and differential improvement in worldwide access with the use of non-identical family donors

Collaborative Groups: Worldwide Network for Blood and Marrow Transplantation

Received: May 13, 2021.
Accepted: July 21, 2021.

Publisher's Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then
One and a half million hematopoietic stem cell transplants: continuous and differential improvement in worldwide access with the use of non-identical family donors

Diegter Niederwieser1,2,3, Helen Baldomero4, Nosa Bazuaye5,6, Caitrin Bupp7, Naeem Chaudhry8,9, Selim Corbacioglu10,11, Alaa Elhaddad12, Cristóbal Frutos13,14, Sebastian Gaieano13,15, Nada Hamad16,17, Amir Ali Hamidieh18, Shahrukh Hashmi19,20, Aloysius Ho21,22, Mary M Horowitz23, Minako Iida21,24, Gregorio Jaimovich25, Amado Karduss13,26, Yoshihisa Kodera27,28, Regis Peffault de Latour29,30, Dr. Wong Leu31,32, Juliana Martinez-Rolon33,34, Marcelo C Pasquini35,36, Jakob Passweg30,31, Kristijan Paulson32, Adriana Seber33,34, John A Snowden30,34, Alok Srivastava35,36, Jeff Szer37,38, Daniel Weisdorf7,39, Mahmoud Aljurf8,40, Hildegard Greinix41; Yoshiko Atsuta21,43; Wael Saber23 for the Worldwide Network of Blood and Marrow Transplantation WBMT

1 University, Leipzig, Germany diegter.niederwieser@medizin.uni-leipzig.de
2 Aichi Medical University School of Medicine, Nagakute, Japan.
3 Lithuanian University of Health Sciences, Kaunas, Lithuania
4 The Worldwide Network of Blood and Marrow Transplantation [WBMT] Transplant Activity Survey Office, University Hospital, Basel, CH
Helen.Baldomero@usdb.ch
5 African Blood and Marrow Transplantation Group-AFBMT
6 University of Benin Teaching Hospital, PMB 1111, Nigeria nosa.bazuaye@yahoo.com
7 CIMBTR (Center for International Blood and Marrow Transplant Research), National Marrow Donor Program/Be The Match, Minneapolis, MN CBupp@nmdp.org.
8 The Eastern Mediterranean Blood and Marrow Transplant Group [EMBMT], King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
9 Oncology Center King Faisal Specialist Hospital & Research Center Riyadh, Saudi Arabia chaudhri@kfs.hredys.sa
10 European Society for Blood and Marrow Transplantation [EBMT], Passeig Taulat 116, 08005, Barcelona, Spain
11 Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Regensburg, Germany selim.corbaciglu@mac.com
12 Department of Pediatric Oncology and Stem Cell Transplantation Unit, Cairo University Cairo, Egypt alaa.elhaddad@hotmail.com
13 Latin American Blood and Marrow Transplantation Group-LABMT
14 Cristóbal Frutos, Inst. Rodo de Prevención Social, Asunción, Paraguay; cfroto.rndeir@gmail.com
15 Sebastian Gakena, Hospital Británico, Montevideo, Uruguay; spakano.uy@gmail.com
16 Austroasian Bone Marrow Transplant Recipient Registry [ABMTRR], St. Vincent’s Hospital Sydney, Australia
17 St. Vincent’s Health Network, Kinghorn Cancer Centre Nada.Hamadi@svh.org.au
18 Pediatrie Cell Therapy Research Center Tehran University of Medical Sciences Tehran, Iran amir.hamidieh@gmail.com
19 Sheikh Shakhbout Medical City, Abu Dhabi, UAE
20 MAYO Clinic, Rochester, MN, USA HashmiShahrukh@mayo.edu
21 The Asia Pacific Blood and Marrow Transplant Group [APBMT], Aichi Medical University School of Medicine, Nagakute, Japan
22 Singapore General Hospital Singapore, Singapore alyosius.ho.ly@singhealth.com.sg
23 CIBMTR, Medical College of Wisconsin, Milwaukee, USA maymnl@mcm.edu; mpasper@mcm.edu; wsafer@mcm.edu
24 Aichi Medical University School of Medicine, Dept. of Promotion for Blood and Marrow Plantation, Nagakute, Japan miida@aichi-med.ac.jp; ykoda@tiver.ocn.ne.jp
25 Fundación Favaloro, Sanatorio Anchorena, IAT, Buenos Aires, Argentina areejaim@gmail.com
26 Inst Rudo de Cancrologia-Clinica Las Americas, Medellin, Colombia gamaa@use.net.co
27 Department of Stem Cell Transplantation, University Medical Center Hamburg, Hamburg, Germany skoeger@uke.uni-hamburg.de
28 Saint-Louis Hospital, 1 avenue Claude Verlaux, 75010 PARIS regis.peffaultdelatour@aphp.fr
29 Seoul ST, Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea jolee@catholic.ac.kr
30 FUNDALUS, Buenos Aires, Argentina jmendo@fundales.org.ar
31 Chefardat Clinic für Hämatologie, Universitätsklinik Basel, Petersgraben 4, 4031 Basel Switzerland jakob.gamweg@usb.ch
32 CancerCare Manitoba and the University of Manitoba, spasken@cancercare.mb.ca and Cell Therapy Transplant Canada [CTTC], Winnipeg, Manitoba, Canada
33 Pediatric Department, Hospital Samaritano, Sao Paulo, Brazil adriana.seber@gmail.com
34 Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK john.snowden1@nhs.net
35 Christian Medical College, Vellore, India abdd@cmcvellore.ac.in
36 Peter MacCallum Cancer Centre & Royal Melbourne Hosp, Gisborne Street, Parkville, Australia Jeff.Szer@mh.org.au
37 University of Minnesota, MMC-BIO, Minneapolis, MN 55455 USA weidi001@umn.edu
38 Medical University of Vienna, Dept. of Blood Group Serology and Transfusion Medicine, Vienna, Austria nina.worel@meduniwien.ac.at
39 Infection and Immunity Clinical Academic Group St George’s Hospital and Medical School, London, UK mickey.kohl@stgeorges.nhs.uk
40 Academic Cell Therapy Facility and Programme Health Sciences Authority Singapore
41 King Faisal Specialist Hospital & Research Center, MBC 64, Riyadh 11211 Saudi Arabia maldjur@kfshrc.edu.sa
42 Medical University of Graz, Division of Hematology, 8036 Graz, Austria hildegard.greinix@klinikuvgraz.at
43 Japanese Data Center for Hematopoietic Cell Transplantation [JDICHT], Nagoya, Japan yatsu@jdicht.or.jp
Disclosures

None

Contributions

DN, HB, MA, KB, KF, and FRA designed the study; HB, NB, CB, NC, SC, AE, CF, SG, NH, AAH, SH, AH, MH, MI, GJ, AK, JK, NK, RPL, JWL, JMR, MP, JP, KP, AS, JAS, AS, JS, DW, NW, MK, MA, HG, YA, WS contributed data and assured quality of the data given to the analysis; HB, DN, MP, and LF analysed data; DN, HB, WS, and NH drafted the manuscript; ; DN, HB, NB, CB, NC, SC, AE, CF, SG, NH, AAH, SH, AH, MH, MI, GJ, AK, JK, NK, RPL, JWL, JMR, MP, JP, KP, AS, JAS, AS, JS, DW, NW, MK, MA, HG, YA processed the manuscript. European data were derived from the European Society for Blood and Marrow Transplantation (EBMT) database for the years 1965–89 and from the EBMT annual activity survey office since 1990. Non-European data were initially provided by the Center for International Blood and Marrow Transplant Research (CIBMTR) since 1964. They were supplemented or replaced by the activity surveys of the Asian Pacific Blood and Marrow Transplantation Group (APBMT) since 1974, the Australasian Bone Marrow Transplant Recipient Registry (ABMTRR) since 1992, the Eastern Mediterranean Blood and Marrow Transplantation Group (EMBMT) since 1984, the Cell Therapy Transplant Canada (CTTC) since 2002, the Latin American Bone Marrow Transplantation Group (LABMT) since 2009, and the African Blood and Marrow Transplant Group (AFBMT) since 2010. Unrelated donor and cord blood information were derived from the World Marrow Donor Association (WMDA) and Bone Marrow Donors Worldwide (BMDW).
ABSTRACT

The Worldwide Network of Blood and Marrow Transplantation (WBMT) pursues the mission of promoting hematopoietic cell transplantation (HCT) for instance by evaluating activities through member societies, national registries and individual centers.

In 2016, 82,718 first HCTs were reported from 1662 HCT teams in 86 of the 195 World Health Organization member states representing a global increase of 6.2% in autologous and 7.0% in allogeneic HCT and bringing the total to 1,298,897 procedures. Assuming a frequency of 84,000/year, 1.5 million HCTs had been performed by 2019 from 1957. Slightly more autologous (53.5%) than allogeneic and more related (53.6%) than unrelated HCTs were reported. A remarkable increase was noted in haploidentical related HCT for leukemias and lymphoproliferative diseases, but even more in non-malignant diseases. Transplant rates (TR; HCT/10 million population) varied according to region reaching 560.8 in North America, 438.5 in Europe, 76.7 in Latin America, 53.6 in South East Asia/Western Pacific (SEA/WPR) and 27.8 in African/East Mediterranean (AFR/EMR). Interestingly, haploidentical TR amounted to 32% in SEA/WPR and 26% in Latin America, but only 14% in Europe and EMR and 4.9% in North America of all allogeneic HCT. HCT team density (teams/10 million population) was highest in Europe (7.7) followed by North America (6.0), SEA/WPR (1.9), Latin America (1.6) and AFR/EMR (0.4).

HCTs are increasing steadily worldwide with narrowing gaps between regions and greater increase in allogeneic compared to autologous activity. While related HCT is rising, largely due to increase in haploidentical HCT, unrelated is plateauing and cord blood in decline.
INTRODUCTION

Allogeneic and Autologous Hematopoietic Stem Cell Transplantation (HCT) is considered a routine but complex therapy for patients with otherwise incurable chemo- and immune-sensitive malignant and non-malignant disorders\(^1\). The treatment is also used for replacing deficient hematopoietic cells or cellular components and more recently for repairing hematopoietic stem cells by gene editing. Despite its increasing applications and international expansion of access, allogeneic HCT is still associated with significant morbidity and mortality and remains an example of highly specialized, high-cost medicine. It requires extensive experience, significant infrastructure and a network of specialists from all fields of medicine. Over the last two decades in particular, allogeneic HCT has undergone a constant technological evolution, with decreasing transplant related-morbidity and mortality and expansion of the donor pool. This has been achieved by optimizing indications, by manipulating alloreactive immune reactions ex- and in-vivo and by using novel reduced or minimal intensity conditioning regimens\(^2\). As a result, HCT is being offered to patients without a matched donor, to older patients and to those with comorbidities\(^3–5\). The predominant autologous HCT transplant type, in contrast, relies exclusively on the high-dose preparative regimen for tumour eradication or for reshaping the immune system in autoimmune diseases\(^6,7\). Patients own hematopoietic stem cells are required to rebuild a normal hematopoietic system after the intensive preparative regimen. Missing graft-versus-host disease leads to extremely low mortality, but missing graft-versus-tumour effects to high relapse rates. It is not surprising that autologous HCT involves different treatment strategies and indications as compared to allogeneic HCT, but like allogeneic HCT require extensive experience, significant infrastructure and a network of specialists from all fields of medicine.

However, the increasing specialization and complexity of health care systems required, threaten global equity of access to HCT. The World Health Organization (WHO; www.who.org) declared the transplantation of organs, cells and tissues a global priority and formed a task force to address quality, safety and equity of access. To achieve this, analysis
of baseline global activity and evolving trends is essential. The Worldwide Network for Blood and Marrow Transplantation (WBMT; www.wbmt.org), is a Non-Governmental (NGO) umbrella organization in the field of HCT and in collaboration with the WHO, has taken up the challenge of collecting and disseminating global HCT activity data on a regular basis. Information on indications, the use of different technologies, donor types and trends over time provide a sound basis for physicians to provide appropriate patient counselling and for health care agencies to develop the necessary infrastructure. Informed by global activity survey data, the WBMT performs worldwide workshops to support the development of new HCT programs and to optimize existing programs. The ability to share accumulated experience covering a wide range of strategies, successes and pitfalls continues to be key in improving global HCT access for patients in need.

The first WBMT HCT activity report was based on the global HCT activity in 2006. This was followed by an updated report in 2010. After reaching the global milestone of one million HCTs in 2012, the WBMT focused on analysing major trends from 2006 onwards and noted a narrowing of gaps in the African/East Mediterranean (AFR/EMRO) regions.

The success of HCT depends on a number of factors including, the early and effective control of the underlying disease prior to HCT, risk of relapse of the underlying disease and donor characteristics. Over the past decade, the rapid evolution of molecular diagnostic and prognostic techniques has led to the emergence of more accurate prognostic tools and effective targeted molecular therapies for malignant haematological diseases.

We report on the global activity trends between 2014 and 2016 compared to 2006 with a specific focus on global trends in equity of access, in indications of HCT and in donor type.

METHODS

Study design
In this retrospective observational survey we analysed the worldwide HCT activity from the first published series of bone marrow transplants collected from the scientific literature and from member societies for very early transplants. After 2006, activities were obtained annually through the WBMT network using a unified center-based reporting system. Information from 2016 onwards is given as prediction based on currently available incomplete and non-validated data.

Main outcome measures were the spread of HCT over time and transplant by donor type, country of origin, and WHO region. Secondary outcome measures were to document any trends in the number of HCT by donor type or region, to classify these trends, and quantify differences in the use of autologous or allogeneic HCT across indications and regions.

No individual patient data were used and no ethics committee approval was mandated. Outcome information is not available from our center-specific registry and we opted against the report of fragmented outcome information of just two developed regions (EBMT and CIBMTR).

Data collection and validation

Global transplant numbers by country of origin, year of transplant, disease and donor type (autologous vs. allogeneic) are collected since 2006 (foundation year of the WBMT) in 194 WHO member states through the registries of the reporting member organizations, or national registries or transplant centers directly either in paper form or electronically using the standardized WBMT form. Detailed and validated information about main indication including stage of the disease, stem cell source, and allogeneic (family matched, family mismatched and unrelated) donor type were obtained for the years 2006 to 2016. Data were validated by a range of different independent systems; through confirmation by the reporting teams, following receipt of a computer printout of the entered data, by selective comparison with MED-A/TED datasets in the EBMT or CIBMTR data system or by crosschecking for double reporting with national registries. Data were validated by onsite visits to selected teams to verify reported data as part of the quality control program within the European, North American, Latin American and Asia-Pacific organisations. On-site visits to selected teams
were part of the quality-control accreditation program of JACIE (www.ebmt.org/jacie-accreditation) or FACT (www.factweb.org). Based on quality controls and contacts with regulatory agencies or national offices, the response rate for allogeneic HCT was estimated to be >95% and for autologous HCT 80–90%. The number of potential missing transplant numbers is estimated to be less than 5% for allogeneic HCT and less than 15% for autologous HCT. This number is much lower for Australia, Canada, Europe, Japan, and the USA. The survey focuses on the numbers of patients treated for the first time with HCT.

Participating HCT Teams, Groups, Countries and Continents

In 2016, 1662 HCT teams in 86 countries over 6 WHO continental regions delivered HCT services globally [(www.who.int/about/regions/en/)]. These regions included the Americas (AMR/PAHO; WHO regions North-, Middle and South America and Canada); Asia (SEAR/WPR; WHO regions South East Asia and Western Pacific Region, which includes Australia and New Zealand); Europe (EUR; which includes Turkey and Israel) and AFR/EMR (WHO regions Africa and Eastern Mediterranean)]. For specific analyses AMR/PAHO activities were divided in North America and Latin-America and AFR/EMR in Africa and EMR. Detailed list of organizations providing activity data and definitions used in the manuscript are reported in the Supplementary data.

Statistical analysis

The data analysis was comprised of ordinary least squares regressions for trends, χ^2 tests for independent proportions of indications, and binomial tests for donor type. Calculations were done in Eviews8 and Excel 2010 (Microsoft).

RESULTS

Total HCTs and overall trends
From 1957-2016, a total of 1,298,897 HCTs (57.1% autologous) procedures were recorded. The cumulative numbers increased continuously from 10,000 in 1985, to 500,000 in 2005 and doubled to 1 million HCTs by 2012. Projecting a frequency of at least 86,844 HCT for 2017 and 89,510 HCT for 2018 (incomplete and not validated data), a total of 1.5 million HCTs worldwide is expected to be reached by 2019 (suppl. Figure S1). The annual activity increased continuously from 46,563 in 2006 to 82,718 in 2016, amounting to a global increase of 77.6% since 2006, which was somewhat higher in allogeneic (89.0%) than in autologous HCT (68.9%, Table 1). The yearly increase was by a median of 5.9% for all HCT (allogeneic 6.8% and autologous 5.9%) to a total of 697,934 procedures (54% autologous) since 2006. The most frequent indications were lymphoproliferative disorders (LPD; n=370,884 HCTs of which 88.4% were autologous) and leukaemia (n=248,860 total of which 94.9% were allogeneic; see suppl. Figure S2). Global HCT team numbers plateaued in the last 4 years with a slight increase in 2016 (suppl. Figure S3), while annual HCT numbers increased continuously. The increase was not a consequence of more reporting HCT teams, but of increased activity per HCT team. While the overall number of HCTs per team was 35.1 in 2006, this reached 49.8 in 2016 (suppl. Figure S3). Absolute numbers of all HCTs per countries ranged from 0 to 19,505.

HCT teams activity in 2016

In 2016, the rates of HCTs exceeded 80,000 HCT per year for the first time with 82,718 HCTs (53.5% autologous) reported in the global HCT activity survey (Table 1). The majority of HCTs were performed in Europe (45.2%) and in North America (24.4%), while SEAR/WPR contributed with 22.7%, Latin-America with 5.1% and AFR/EMR with 2.7%. The trends for TR were somewhat different, with rates highest in North America (561 TR), followed by Europe (439 TR), Latin America (77 TR), SEAR/WPR (54 TR), EMR (36 TR) and Africa (9 TR); (Figure 1). TR were higher for autologous than for allogeneic HCT in all regions except for SEAR/WPR, EMR and AFR. TR for allogeneic HCT ranged from 0.3 in Morocco to 414.0 in
Israel (median 47.6); and for autologous HCT from 0.1 in Egypt to 705.9 in Iceland (median 99.1).

The number of HCT teams varied considerably across regions, with the highest numbers being in SEAR/WPR and Europe (Figure 2). In contrast, TD ranged from 0.05-29.4/country and was highest in Europe (7.7 TD) followed by North America (6.0 TD), SEAR/WPR (1.9 TD), Latin America (1.6 TD), EMR (0.4 TD) and Africa (0.3 TD). Accordingly, the most HCTs per team were performed in North America and EMR.

Trends in indications and HCT type

All regions showed increases in activity compared to 2006 (range: 54.3% in EUR - 164.8% in SEAR/WPR) for both transplant types (range: autologous 45.5% in EUR - 126.6% in SEAR/WPR and allogeneic 49.1% North America - 193.4% SEAR/WPR; Table 1). Trends and increase in allogeneic and autologous HCT from 2006 to 2016 according to disease and regions are shown in Figure 3 and suppl. Figure S4 A-B, respectively. The most common indications for autologous and allogeneic HCT (n=82,718) were lymphoproliferative diseases (53.0%), leukemias (35.7%), non-malignant disorders (7.3%) and solid tumours (3.6%; see Table 1).

Allogeneic HCT

Leukaemia is the most common indication for allogeneic HCT (n=28,719) and the most frequent single indication acute myeloid leukaemia (AML) with a total of 14,334 HCTs, followed by acute lymphoblastic leukemia (ALL; n=6895), myelodysplastic syndrome (MDS)/myeloproliferative neoplasms (MPS; n=5616) and chronic myeloid leukemia (CML; n=1108). Non-malignant disorders (n=5,427) with the subgroups bone marrow failure (49.5%), hemoglobinopathies (23.3%) and Immunodeficiencies (17.9%) were identified as the second most common indication for allogeneic HCT. The third most common indication
was LPD (n=3,972) of which 81.7% were Hodgkin Disease (HD)/non Hodgkin Disease (NHL) and 16.6% plasma cell disorders (PCD).

Increases from 2006 were noted especially in non-malignant disorders (139.4%), leukaemias (99.5%) with the subgroups MDS/MPS (147.6%), AML (116.8%) and LPD (23.4%). Declines were noted in CML (-16.9%) and chronic lymphocytic leukaemia (CLL) (-17.3%; Table 1). HCTs were performed predominantly in AML in first complete remission (CR1) (suppl. Figure S4 A) with a decline in procedures in non-CR1. In ALL CR1 was also more frequent than non-CR1. HCT for MDS and, to a lower extent MPN, increased steadily over the observation period. Increased allogeneic HCT activities were observed for almost all indications in all regions. The highest increase was noted for related donors in the SEAR/WPR region (279%; Table 1; Figure 3). The only observed decrease involved solid tumours (44% decrease) in almost all regions except for SEAR/WPR and LPD in North America.

Autologous HCT

The most frequent indication for autologous HCT in 2016 was LPD (n=39,878, 84.2% of all autologous HCTs; Table 1) and the most frequent single indication PCD and HD/NHL with 59.4% and 40.4%, respectively. HCT for solid tumours (n=2,853) accounted for 6.4% of autologous HCTs and 844 (1.9%) were performed for leukaemia’s mostly for AML (74.8%) and ALL (18.4%). Autoimmune diseases (AID) (92.2%) were the predominant indication for autologous HCT within non-malignant diseases (n=691). Frequencies of autologous HCT increased in almost all indications and regions especially for LPD and non-malignant disorders. Decreases in autologous HCT were observed for leukaemia (except SEAR/WPR) and for solid tumours in Europe. The highest increase in autologous HCT was observed in Latin America for non-malignant disorders. The frequency of autologous HCT increased by 68.9% predominantly in non-malignant disorders (258%), primarily AID (246.2%) in PCD (122%) and in lymphoma (46.7%; suppl. Figure 4 B and Table 1). Decreased activity of autologous HCTs was reported for all leukemias (-51.1%; Figure 3).
Trends in donor type and stem cell source

Autologous HCTs (range 0 - 11,655) were reported from 85 participating countries, while allogeneic HCTs (range 0-7850) were reported from 76 countries, including procedures from unrelated donors and from CB in 55 and in 41 countries, respectively. Overall, related HCT has become more frequent than unrelated HCT starting in 2014 (suppl. Figure S5). The increase in related HCT was mainly due to the use of nonidentical related donors (39.5% of related HCT), which increased significantly over the last four years, while unrelated CB showed a moderate decline. A detailed analysis of identical and non-identical related HCT according to indication and in comparison to unrelated HCT is given in Table 2. Highest increases were observed for severe aplastic anemia and hemoglobinopathies (Delta 2007-2016 >1000%) and for leukemia (Delta 2007-2016 >550%; especially AML 1st CR, ALL 1st CR, CML 1st CP with max. 2456%, data not shown), but also in LPD (especially in HD and NHL max Delta 2007-2016 =711%). In comparison, HCT from related identical donors showed Delta 2007-2016 of max. 189% for ALL 1st CR and from unrelated for AML 1st CR of 430%.

Amongst allogeneic HCTs, the proportion of unrelated donor HCT ranged from 4.4% to 78.3% (median 20%), with 30 countries performing more unrelated than related donor HCTs. Absolute unrelated HCT numbers ranged from 0 to 4,311 and those of CB ranged from 0 to 1,233 in individual countries. It is not surprising that more related HCTs were performed in regions without an unrelated donor registry (Latin America, EMR, AFR and SEAR/WPR). Related haploidentical HCTs (n= 8,131) were evenly distributed in 62 countries; with absolute numbers ranging from 0 to 2,554 and proportions of all allogeneic HCTs ranging between 1.5% to 77% (median 8%). TR for haploidentical HCT was highest in North America (n=38), 25 in Europe, 8 in Latin America and ≤4 in Asia Pacific, AFR and EMR (Figure 1). However, TR as % of allogeneic HCT reached 34% in SEAR/WPR and 26% in Latin America, while it was only 14% in Europe and EMR.

Peripheral blood (PB) was the predominant graft source in both autologous (99.7%) and allogeneic (72.8%) HCTs, while CB as a source has declined (in 2016 13.9% of all unrelated
and 6.7% of all allogeneic HCT). Of the 38,425 allogeneic HCTs, 7,868 (20%) were bone marrow (BM) derived, 27,963 (73%) were from PB and 2,594 (7%) from CB. Of the 44,293 autologous HCTs, 99.7% were from PB, 0.3% from BM and only 3 single HCTs were from CB.

Discussion

The analysis of global HCT activity based on data from 2006-2016 on 700,000 HCTs over the last 10 years gathered by the WBMT gives important insights into the global trends in the field of HCT.

As per previous reports 8–13, HCT activities continue to increase worldwide without plateau and exceeded 80,000 procedures annually for the first time in 2016 and are expected to exceed 90,000 in 2018 to reach a total of 1.5 million by 2019. Although allogeneic HCT has increased more than autologous in recent years, the later remains the predominant transplant type and LPD the leading disease indication. Leukaemia is the second most frequent HCT indication and 94.9% of these use allogeneic donors. While HCT on patients with acute leukemias (predominantly in CR1, but not in non-CR1) and MDS/MPN increase, a decrease of frequencies in chronic leukemias (CLL and CML) was observed. Non-malignant disorders now account for 7.3% of all HCTs (89.2% of which are allogeneic) with bone marrow failures as the most frequent group of disease indications (47.5%, mostly severe aplastic anemia). Hemoglobinopathies were the second most frequent indication (22.4%) with an increase of 222.3%. Finally, solid tumours were the indication in 3.6% of all HCTs and were almost exclusively transplanted with autologous grafts (97%). Striking is the pronounced increase in haploidentical HCT in hemoglobinopathies, severe aplastic anemia, leukemia and LPD (especially MM and NHL) in developing countries. Findings are partly in agreement on a larger scale with the development in Europe and US, but also diverge especially on the use of haploidentical HCT for non-malignant diseases, in the use of
autologous HCT in autoimmune disease (LABMT) and in leukemias (SEAR/WPR) and in the use of allogeneic HCT in autoimmune diseases in SEAR/WPR.

There was substantial divergence in the rate of growth of HCT between different regions, with increases of more than 129% in SEAR/WPR and Latin-America over the last decade contributing strongly to the continuous global upward trend in activity. Both regions reported their major increases in non-malignant disorders, in the SEAR/WPR with allogeneic and in Latin America with autologous HCTs. AFR/EMR had a remarkable growth of 80% in comparison to 65% in North America and 54% in Europe. Despite the differential increase, TR still vary by more than 10 fold from region to region. A deeper analysis of the number of HCT teams in the different regions showed three patterns: high (>500 teams; SEAR/WPR and EUR), intermediate (100-500 teams; North America) and low (<100 teams; AFR, EMR, Latin America). TD was similar in North America and Europe (6.0 and 7.7 respectively), between 1-2 in SEAR/WPR and Latin America and <1 in all other regions. While North America and EMR had most HCTs per HCT team (93.7 and 86.6, respectively), Europe and Latin America had intermediate (57.0 and 48.2, respectively), SEAR/WPR and AFR had the lowest (27.9 and 32.7, respectively) HCT per team. It is encouraging that HCT and TRs in developing regions are increasing steadily, although there are differences in indications and diseases, and are closing the HCT access gap. However, the disparities in access between regions remains substantial.

Although the WBMT has established a global coverage of international transplant societies with an estimated >90% reporting, at least one very large country had incomplete reporting and lacked a national registry. With the aim of establishing such a registry, the WBMT organized a successful workshop to highlight the importance of coordinated reporting. Increased numbers of teams and activities in that country are now expected starting in 2016 (Xu L-P, Lu P_H, Wu D-P et al. Hematopoietic stem cell transplantation activity in China 2019: a report from the Chinese Blood and Marrow Transplantation registry Group. Bone
marrow transplantation; 2021 (in press)). Therefore, the data presented here are certainly an underestimate but are expected to increase further with greater completeness of reporting14.

The considerable increase seen in the SEAR/WPR and Latin American region in non-malignant disorders, hemoglobinopathies (allogeneic HCT) and AID (autologous HCT, predominantly in multiple sclerosis), is of special interest. It is reassuring to see a worldwide trend of more patients to be transplanted in CR1 rather than later in their disease course. This phenomenon is much more evident in AML and remains constant in ALL. Lymphoma accounts for less of the increase in autologous HCT than do PCD. The indications for CML decreased only slightly in the 10 year period following the availability of successive tyrosine kinase inhibitor pharmaceuticals. However, it should be noted here that more patients were transplanted beyond chronic phase CML, and not in line with ELN recommendations15. The changes in donor type and graft source confirm trends previously described. Frequencies of haploidentical HCT increased considerably to reach \textgreater 10% of all allogeneic HCT throughout all regions. As a consequence, more related (matched and haploidentical) HCT were performed than were unrelated HCTs, and the later appears to have reached a plateau. The increase of haploidentical related donors might have several reasons including lack of donors for Latin-American patients in international registries, lack of local national donor registries and economic. The availability of new technologies like the post-cyclophosphamid protocol and the so called ‘Beijing Protocol’ using G-CSF/Anti Thymocyte Globulin and multiple stem cell sources (bone marrow and peripheral blood stem cells)14,16 may have contributed to this development. Overall, CB HCTs decreased consistent with the pattern seen in Europe.

There are a few limitations in this analysis. The first one relates to the reporting lag of the analysis. Logistics in obtaining data from 1660 transplant centers worldwide are the main cause for this delay. While some of the regions are reporting in real time, emerging regions have not a central national or regional reporting system. In these regions, WBMT collected the information from individual transplant centers returning the results to the regional societies for completeness checking. An internet-based reporting system was developed by the WBMT and is expected to bring up gradually the survey reports to real time. An additional
limitation of this analysis is the inability to provide information on utilization of HCT for specific illnesses and on information restricted to first HCT. Utilization is currently being analysed worldwide for myeloma and AML by the WBMT, but should be extended to major indications. Furthermore, information on second or third HCTs is not currently available, although these account for approximately 10% of HCTs in developed countries, but will be implemented with the new reporting system.

One of the challenges that the WBMT faces, is how to go beyond calculations of global HCT activity and accelerate global equity of access to HCT. The most efficient method may be to increase HCT activity/team. In fact, transplant teams have already increased their annual HCTs/team by a median of 14 HCT/team since 2006. As shown in this study, 50 HCTs per team are feasible even in developing countries and almost 100 HCTs per team are currently being performed in North America.

Increasing team numbers might be more difficult. This is due in part to the funds allocated to local health expenditure, but also due to limitations in the infrastructure required including blood banks, intensive care units, multidisciplinary teams and microbiology expertise. Shortages and unavailability of medicines and lack of trained biomechanical/biotechnical technicians have also hindered HCT activities in developing countries. The WBMT has the capacity to review and analyse global HCT activity data and apply this data to support HCT activities globally. Global activity survey data has been instrumental in informing and shaping HCT support workshops in the different regions, which have been successful in fostering collaboration amongst international societies and supportive expert HCT networks globally. The WBMT, on its site, has already prepared a variety of documents to facilitate the establishment of new transplant programs (requirements for establishing a program, list of essential medicines, use of biosimilars to reduce costs and establishing unrelated donor registries). In addition, supervisory telemedicine is an evolving and potentially powerful tool to overcome lack of experience with collateral benefits for conventional hematology, blood banking, microbiology and virology. Devoted physicians and willing health authorities
are essential for the application of such technologies and successful collaborations accompanied by demonstration of compliance with international standards to provide reassurance to internal and external stakeholders22.

The achievements obtained in the last decade should be an incentive to continue and even increase the common efforts to improve access and close faster the gap worldwide. This is a common effort of professional organizations, WHO, politicians and Health Authorities. The role of the WHO is essential in coordinating this process among their member states.

Acknowledgments:

Funding for this study was indirectly provided by support of the WBMT. Funding was solely to support the study; no individual payment was made to any of the persons involved in the study. The Activity Survey Office is partly supported by the University Hospital of Basel. MG was supported by SCCER CREST. The appendix shows details about funding of the participating institutions. The cooperation of all participating teams, countries and organizations with their staff is greatly appreciated, specifically the following: ABMTRR: St. Vincent’s Hospital Sydney, APBMT: Aichi Medical University, CTTC: CIBMTR: Medical College of Wisconsin, EBMT: Coordination offices in Barcelona, Paris and London and the Austrian Registry (ASCTR), the Czech BMT Registry, the French Registry (SFGM), the German Registry (DRST), the Italian Registry (GITMO), the Dutch Registry (HOVON), the Spanish BMT Registry (GETH), the Swiss Registry (SBST), the Turkish BMT Registry and the British Registry (BSBMT), EMBMT, SBTMO, LABMT, AFBMT, WMDA, and Eurocord. The authors thank Michael Cross for editorial work on the manuscript.
Contributions:

DN, HB, MA, KB, KF, and FRA designed the study; HB, NB, CB, NC, SC, AE, CF, SG, NH, AAH, SH, AH, MH, MI, GJ, AK, JK, NK, RPL, JWL, JMR, MP, JP, KP, AS, JAS, AS, JS, DW, NW, MK, MA, HG, YA, WS contributed data and assured quality of the data given to the analysis; HB, DN, MP, and LF analysed data; DN, HB, WS, and NH drafted the manuscript; DN, HB, NB, CB, NC, SC, AE, CF, SG, NH, AAH, SH, AH, MH, MI, GJ, AK, JK, NK, RPL, JWL, JMR, MP, JP, KP, AS, JAS, AS, JS, DW, NW, MK, MA, HG, YA processed the manuscript. European data were derived from the European Society for Blood and Marrow Transplantation (EBMT) database for the years 1965–89 and from the EBMT annual activity survey office since 1990. Non-European data were initially provided by the Center for International Blood and Marrow Transplant Research (CIBMTR) since 1964. They were supplemented or replaced by the activity surveys of the Asian Pacific Blood and Marrow Transplantation Group (APBMT) since 1974, the Australasian Bone Marrow Transplant Recipient Registry (ABMTRR) since 1992, the Eastern Mediterranean Blood and Marrow Transplantation Group (EMBMT) since 1984, the Cell Therapy Transplant Canada (CTTC) since 2002, the Latin American Bone Marrow Transplantation Group (LABMT) since 2009, and the African Blood and Marrow Transplant Group (AFBMT) since 2010. Unrelated donor and cord blood information were derived from the World Marrow Donor Association (WMDA) and Bone Marrow Donors Worldwide (BMDW).
References

Table 1: Global Hematopoietic Cell Transplant (HCT) activity in 2006, 2016 and changes according to disease indication, donor type and World Region

<table>
<thead>
<tr>
<th>Family</th>
<th>Unrelated</th>
<th>Allogeneic</th>
<th>Autologous</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Δ % (06-16)</td>
<td>Δ % (06-16)</td>
<td>Δ % (06-16)</td>
<td>Δ % (06-16)</td>
</tr>
<tr>
<td>Leukemia’s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AML</td>
<td>7491</td>
<td>14992</td>
<td>100</td>
<td>6901</td>
</tr>
<tr>
<td></td>
<td>13727</td>
<td>99</td>
<td>28719</td>
<td>99,5</td>
</tr>
<tr>
<td>ALL</td>
<td>3587</td>
<td>7531</td>
<td>110</td>
<td>3024</td>
</tr>
<tr>
<td></td>
<td>6803</td>
<td>125</td>
<td>14334</td>
<td>116,8</td>
</tr>
<tr>
<td>CML</td>
<td>1679</td>
<td>3965</td>
<td>136</td>
<td>1809</td>
</tr>
<tr>
<td></td>
<td>2930</td>
<td>62</td>
<td>6895</td>
<td>97,7</td>
</tr>
<tr>
<td>MDS/MPS</td>
<td>826</td>
<td>624</td>
<td>-24</td>
<td>508</td>
</tr>
<tr>
<td></td>
<td>484</td>
<td>-5</td>
<td>1108</td>
<td>-16,9</td>
</tr>
<tr>
<td>CLL</td>
<td>1052</td>
<td>2472</td>
<td>135</td>
<td>1216</td>
</tr>
<tr>
<td></td>
<td>3144</td>
<td>159</td>
<td>5616</td>
<td>147,6</td>
</tr>
<tr>
<td>Other leukemias</td>
<td>295</td>
<td>220</td>
<td>-25</td>
<td>261</td>
</tr>
<tr>
<td></td>
<td>246</td>
<td>52</td>
<td>306</td>
<td>126,7</td>
</tr>
<tr>
<td>LPD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasma cell disorders</td>
<td>1863</td>
<td>2023</td>
<td>9</td>
<td>1356</td>
</tr>
<tr>
<td></td>
<td>1949</td>
<td>44</td>
<td>3972</td>
<td>23,4</td>
</tr>
<tr>
<td>HD/NHL</td>
<td>490</td>
<td>312</td>
<td>-36</td>
<td>283</td>
</tr>
<tr>
<td></td>
<td>348</td>
<td>23</td>
<td>660</td>
<td>-14,6</td>
</tr>
<tr>
<td>Lymphoma Other/unknown</td>
<td>1373</td>
<td>1673</td>
<td>21</td>
<td>1073</td>
</tr>
<tr>
<td></td>
<td>1573</td>
<td>47</td>
<td>3246</td>
<td>32,7</td>
</tr>
<tr>
<td>Solid tumors</td>
<td>52</td>
<td>180</td>
<td>246</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>126</td>
<td>52</td>
<td>306</td>
<td>126,7</td>
</tr>
<tr>
<td>Non-malignant disorders</td>
<td>1458</td>
<td>3423</td>
<td>134</td>
<td>902</td>
</tr>
<tr>
<td>Bone marrow failures</td>
<td>840</td>
<td>1775</td>
<td>111</td>
<td>452</td>
</tr>
<tr>
<td>Hemoglobinopathies</td>
<td>338</td>
<td>962</td>
<td>185</td>
<td>54</td>
</tr>
<tr>
<td>Immune deficiencies</td>
<td>206</td>
<td>472</td>
<td>129</td>
<td>239</td>
</tr>
<tr>
<td>Inherited diseases of</td>
<td>59</td>
<td>111</td>
<td>88</td>
<td>118</td>
</tr>
<tr>
<td>metabolism</td>
<td>6</td>
<td>19</td>
<td>217</td>
<td>10</td>
</tr>
<tr>
<td>Autoimmune disorders</td>
<td>0</td>
<td>38</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other non-malignant</td>
<td>9</td>
<td>84</td>
<td>833</td>
<td>29</td>
</tr>
<tr>
<td>Others</td>
<td>80</td>
<td>109</td>
<td>36</td>
<td>132</td>
</tr>
<tr>
<td>EUR</td>
<td>4906</td>
<td>7074</td>
<td>44</td>
<td>4222</td>
</tr>
<tr>
<td>North America</td>
<td>2580</td>
<td>3680</td>
<td>42,6</td>
<td>2878</td>
</tr>
<tr>
<td>SEAR/WPR</td>
<td>1948</td>
<td>7392</td>
<td>279</td>
<td>2110</td>
</tr>
<tr>
<td>Latin America</td>
<td>771</td>
<td>1197</td>
<td>55,3</td>
<td>115</td>
</tr>
<tr>
<td>EMR/AFR</td>
<td>797</td>
<td>1251</td>
<td>57</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL</td>
<td>11002</td>
<td>20594</td>
<td>87.0</td>
<td>9331</td>
</tr>
</tbody>
</table>

Abbreviations: Δ (06/16) Difference from 2006 to 2016 in %; AML, acute myeloid leukemia; ALL, acute lymphoblastic leukemia; CML, chronic myeloid leukemia; MDS/MPS, myelodysplastic syndrome/myeloproliferative syndrome; CLL, chronic lymphocytic leukemia; LPD, Lymphoproliferative disorders; EUR, Europe; SEAR/WPR, South East Asia Pacific Region/West Pacific Region; EMR/AFR, East Mediterranean Region/African Region
Table 2: Trend of global Hematopoietic Cell Transplant (HCT) activity according to disease indication and donor type

<table>
<thead>
<tr>
<th></th>
<th>related identical</th>
<th>related non-identical</th>
<th>related total</th>
<th>unrelated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukemia's</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AML</td>
<td>6858</td>
<td>8906</td>
<td>29,9</td>
<td>1101</td>
</tr>
<tr>
<td>ALL</td>
<td>3249</td>
<td>4453</td>
<td>37,1</td>
<td>472</td>
</tr>
<tr>
<td>CML</td>
<td>1635</td>
<td>2256</td>
<td>38,0</td>
<td>376</td>
</tr>
<tr>
<td>MDS/MD/MPN</td>
<td>601</td>
<td>388</td>
<td>-35,4</td>
<td>56</td>
</tr>
<tr>
<td>CLL</td>
<td>279</td>
<td>166</td>
<td>-40,5</td>
<td>17</td>
</tr>
<tr>
<td>Other leukemias</td>
<td>50</td>
<td>84</td>
<td>68,0</td>
<td>24</td>
</tr>
<tr>
<td>LPD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasma Cell Disorders</td>
<td>1677</td>
<td>1238</td>
<td>-26,2</td>
<td>163</td>
</tr>
<tr>
<td>Multiple Myelomas</td>
<td>542</td>
<td>234</td>
<td>-56,8</td>
<td>23</td>
</tr>
<tr>
<td>others</td>
<td>341</td>
<td>211</td>
<td>-38,1</td>
<td>8</td>
</tr>
<tr>
<td>Hodgkin Disease</td>
<td>9</td>
<td>23</td>
<td>155,6</td>
<td>1</td>
</tr>
<tr>
<td>Non Hodgkin Lymphoma</td>
<td>1135</td>
<td>979</td>
<td>-13,7</td>
<td>140</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>186</td>
<td>205</td>
<td>10,2</td>
<td>29</td>
</tr>
<tr>
<td>Non-malignant disorders</td>
<td>796</td>
<td>774</td>
<td>-2,8</td>
<td>63</td>
</tr>
<tr>
<td>Solid tumors</td>
<td>47</td>
<td>4</td>
<td>-91,5</td>
<td>32</td>
</tr>
<tr>
<td>Bone Marrow Failure</td>
<td>1354</td>
<td>2185</td>
<td>61,4</td>
<td>196</td>
</tr>
<tr>
<td>Severe Aplastic Anemia</td>
<td>789</td>
<td>1136</td>
<td>44,0</td>
<td>65</td>
</tr>
<tr>
<td>Hemoglobinopathies</td>
<td>644</td>
<td>964</td>
<td>49,7</td>
<td>48</td>
</tr>
<tr>
<td>Immune Deficiencies</td>
<td>145</td>
<td>172</td>
<td>18,6</td>
<td>17</td>
</tr>
<tr>
<td>Inherited Diseases of Metabolism</td>
<td>338</td>
<td>711</td>
<td>110,4</td>
<td>21</td>
</tr>
<tr>
<td>Autoimmune Disorders</td>
<td>140</td>
<td>234</td>
<td>67,1</td>
<td>84</td>
</tr>
<tr>
<td>Other Non Malignant disorders</td>
<td>44</td>
<td>54</td>
<td>22,7</td>
<td>19</td>
</tr>
<tr>
<td>Other</td>
<td>12</td>
<td>10</td>
<td>-16,7</td>
<td>1</td>
</tr>
<tr>
<td>Other Non Malignant disorders</td>
<td>31</td>
<td>40</td>
<td>29,0</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL</td>
<td>9997</td>
<td>12399</td>
<td>24,0</td>
<td>1504</td>
</tr>
</tbody>
</table>
Legend to Figures

Figure 1: Transplant Rates (HCT/10 million population) according to transplant type (autologous, allogeneic, related mismatched and Cord Blood) and world regions in 2016

Figure 2: Number of HCT teams, HCT team density (TD) and HCTs per team according to World Regions (EUR, Europe; EMR, East Mediterranean Region; AFR, Africa; SEAR/WPR, South East Asia Region/ Western Pacific Region).

Figure 3: Change in activity in % from 2006 and 2016 according to disease indication and world region
Supplementary data

Methods

Participating HCT Teams, Groups, Countries and Continents

Data were provided by the Australasian Bone Marrow Transplant Recipient Registry ABMTRR (www.abmtrr.org), the African Blood and Marrow Transplant Group (AFBMT), the Asian Pacific Blood and Marrow Transplant Group (APBMT: www.apbmt.org), the Cell Therapy Transplant Canada (CTTC: www.cttcanada.org), the Center for International Blood and Marrow Transplantation (CIBMTR: www.cibmtr.org), the Eastern Mediterranean Blood and Marrow Transplant Group (EMBMT: www.embmt.org), the European Society for Blood and Marrow Transplantation (EBMT: www.ebmt.org) and the Latin American Bone Marrow Transplantation Group (LABMT: LABMT@wbmt.org).

Definitions

Transplant rates (TRs) were computed as the number of HCT per 10 million inhabitants not corrected for population age. Population data for non-European countries were obtained from the World Bank (https://databank.worldbank.org/data/indicator/SP.POP.TOTL/1ff4a498/Popular-Indicators) and for the European Countries from Eurostats (http://appsso.eurostat.ec.europa.eu). We assessed patients by donor type (allogeneic or autologous HSCT), stem cell source (bone marrow, peripheral blood stem cells, or cord blood) and indication including stage of the disease (according to https://www.ebmt.org/ebmt/documents/dismclfd-list-disease-classifications). There was no adjustment for patients who crossed borders and received their HCT in a foreign country. We computed Team Density (TD) for each country as the number of teams per 10 million inhabitants in 2016.

Unrelated donor transplants include HCT from matched or mismatched unrelated donors with peripheral blood and bone marrow as a stem cell source, but not cord blood (CB) HCT. Haploidentical transplants are being described as derived from family donor member with ≥2
loci mismatches within the loci HLA-A, -B, -C, -DRB1 and -DQB1 in GvH and/or HvG direction. Other family donors are those related donors that are mismatched to a lesser degree. For the purpose of analysis we add the small number of “other family donor” to haploidentical donor HCT naming them related mismatch.
Legend to suppl. Figures

Suppl. Figure S1: Total, autologous and allogeneic HCT worldwide from 1957 to 2016 and projected until 2019 (dotted line)

Suppl. Figure S2: Total HCT numbers collected from 2006 until 2016 (n= 697,934) divided by donor type (autologous and allogeneic) and indications

Suppl Figure S3: Total HCT per year, number of HCT teams and HCTs per teams from 2006 – 2016

Suppl. Figure S4: Trends of allogeneic (A) and autologous (B) HCT according to disease indication and disease remission status from 2006 to 2016 (EUR, Europe; EMR, East Mediterranean Region; AFR, Africa; SEAR/WPR, South East Asia Region/ Western Pacific Region)

Suppl. Figure S5: Increase in allogeneic HCT according to donor type (related, unrelated, related identical, related mismatched/haploidentical and unrelated cord blood).
suppl. Figure S1

![Graph showing the increase in hematopoietic cell transplantation (HCT) procedures from 1957 to 2019. The graph plots the number of HCT procedures (HCT n) against the year. There are three curves representing total, autologous, and allogeneic HCT procedures. The total HCT procedure number increases dramatically over time, with a sharp rise in the 2000s.](image-url)
suppl. Figure S2

The figure shows the number of hematopoietic cell transplants (HCT) indicates for various conditions. The x-axis represents different indications, and the y-axis shows the number of HCTs in thousands.

- **Total Leukemia**: 12389
- **Total AML**: 9738
- **Total MDS/MPD**: 56783
- **MDS ind. Sec AL**: 43479
- **MPS**: 31888
- **Total CML**: 12117
- **Total LD**: 6242
- **Total Lymphoma**: 327936
- **NHL**: 15325
- **HD**: 148644
- **Total solid tumors**: 24783
- **Total Non-malignant dis.**: 101657
- **Total Bone Marrow Failure**: 34504
- **Hemoglobinopathies**: 3414
- **Primary Immune Deficiency**: 20550
- **Inherited Dis of Metabolism**: 9486
- **Auto Immune Disease**: 1431

The figure compares allogeneic HCT (blue bars) and autologous HCT (orange bars) for each indication.
suppl. Figure S3
Suppl. Figure S4

A

Year

0

2007

08

09

10

11

12

13

14

15

2016

HCT (n)

0

5000

10000

15000

20000

25000

Leukemia

Plasma Cell Disorder

Lymphoma

Solid tumors

Non-malignant dis.

B

Leukemia

Plasma Cell Disorder

Lymphoma

Solid tumors

Non-malignant dis.