Direct and indirect anti-leukemic properties of activity-on-Target interferons for the treatment of T-cell acute lymphoblastic leukemia

by Steven Goossens, Anje Cauwels, Tim Pieters, Renate De Smedt, Sara T'Sas, André Almeida, Willem Daneels, Pieter Van Vlierberghe, and Jan Tavernier

Received: April 5, 2021.
Accepted: July 2, 2021.

Publisher's Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
Direct and indirect anti-leukemic properties of Activity-on-Target interferons for the treatment of T-cell acute lymphoblastic leukemia

Steven Goossens1,2,3,*, Anje Cauwels1,3,4,5,*, Tim Pieters1,3, Renate De Smedt1,3, Sara T'Sas1,3, André Almeida1,3, Willem Daneels1,6, Pieter Van Vlierberghe1,3,6 and Jan Tavernier1,3,4,5,6,7

1 Cancer Research Institute Ghent (CRIG), Ghent University, B-9000 Ghent, Belgium
2 Department of Diagnostic Sciences, Ghent University, B-9000 Ghent, Belgium
3 Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium
4 VIB-UGent Center for Medical Biotechnology, B-9000 Ghent, Belgium
5 Orionis Biosciences BV, B-9052 Ghent, Belgium
6 Department of Hematology, Ghent University Hospital, B-9000 Ghent, Belgium

*Authors contributed equally
\#Authors contributed equally

Key words: interferon, immunocytokine, T-ALL

Running title: AcTaferons to treat T-ALL

Correspondence:
Pieter Van Vlierberghe, PhD
Ghent University, Department of Biomolecular Medicine
Corneel Heymanslaan 10, Medical Research Building 2 (MRB2)
B-9000 Ghent, Belgium
Tel: 0032 9 3321043
Fax: 0032 9 332 4970
E-mail: pieter.vanvlierberghe@ugent.be
Orcid-id: https://orcid.org/0000-0001-9063-7205

Acknowledgements
This work was supported by the Stichting ME TO YOU, the Ghent University Research Fund (BOF-UGent) and the Research Foundation Flanders (FWO). We thank Reza Hassanzadeh Ghassabeh (VIB Nanobody Core) for the selection of the VHH's. JT is recipient of UGent Methusalem and ERC Advanced (CYRE, N*340941) grants.
Conflict of interest
JT and AC are affiliated with Orionis Biosciences. JT holds equity interests and receives financial research support from Orionis Biosciences. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Contributions
SG, AC, PVV and JT conceived and designed the experiments and wrote the paper. SG, AJ, TP, ST, RDS performed experiments. SG and ST analyzed data. SG, TP and AA generated the mouse T-ALL cell lines. AC and JT produced the cytokines. SG, AC, WD, PVV and JT discussed results and critically reviewed the manuscript. SG and PVV directed and supervised the research. All authors approved the final manuscript.
T-cell acute lymphoblastic leukemias (T-ALL) are rare aggressive hematological tumors resulting from the malignant transformation of T-cell progenitors in the thymus. T-ALL treatment currently consists of high-dose multi-agent chemotherapy, potentially followed by hematopoietic stem cell transplantation for high-risk patients. Unfortunately, even with such a harsh and long treatment regime, the outcome of T-ALL patients with primary refractory or early relapsed leukemia remains poor. Novel therapeutic strategies to treat those high-risk patients remain an important unmet medical need. Type-I interferons (IFN-I) have a long history in the treatment of cancer, including hematological malignancies. The pleiotropic anti-cancer effects induced by IFN-I result from a combination of i) direct cancer cell growth inhibition by inducing cell cycle arrest, apoptosis, differentiation, and ii) indirect effects by the activation of the immune system involving antigen presentation by dendritic cells (DCs) and priming of cytotoxic CD8+ T-cells. As such, this cytokine, with both a direct and indirect immunostimulatory anti-cancer effect, is unique in its kind. Nevertheless, IFN-I therapy experienced variable and unpredictable success in the clinic. Its clinical application is severely impeded by a complex pattern of adverse side-effects, due to the multifaceted activity pattern of IFN-I. Therefore, safe exploitation of the anti-cancer potential of IFN-I requires strategies to direct their activity to selected target cells only.

To document the direct anti-cancer effect of IFN-I on T-ALL, we stimulated 9 human T-ALL cell lines with increasing concentrations of recombinant human interferon alpha-2 (hIFNα2) for 4 days and measured the effect on their in vitro growth. A variable anti-proliferative effect was observed, with no correlation between IFN-I sensitivity and immunophenotype or molecular subtype (Supplemental Figure S1). Consistent with previous studies, the anti-proliferative effect was associated with activation of the JAK/STAT1 pathway as documented by the increased levels of phosphorylated STAT1 (pSTAT1) using flow cytometry. We hypothesized that elevated pSTAT1 levels upon IFN-I stimulation could be used as a biomarker to stratify between IFN-I sensitive and non-sensitive T-ALL patients. To validate our findings in primary T-ALL patient material, we stimulated 3 patient-derived xenografts (PDX) samples with 100ng/ml hIFNα2 for 30 minutes and quantified pSTAT1 levels (Figure 1A). Similar as for the cell lines, a variable IFN-I response was observed. Subsequently, we transplanted the IFN-I responsive (PDX#1) and non-responsive (PDX#3) PDX samples in immunodeficient NOD-scid IL2Rγnull (NSG) mice. As soon as evidence of leukemia progression was observed (>5% hCD45+ in peripheral blood), mice (5 mice/group) were treated for 7 consecutive days with intraperitoneal injections of 30μg hIFNα2/mouse or vehicle (100 μl PBS). Only for the IFN-I responsive PDX#1, a significant anti-leukemic effect was observed with a decrease in the percentage of hCD45+ in the peripheral blood at the end of the 7-days
treatment regime and a prolonged leukemia-free survival of the mice (Figure 1B). Of note, IFNα2 has a strict species-specificity and human IFNα2 is unable to activate the mouse receptor complex79, indicating that the observed anti-leukemic effects can only be due to cell-intrinsic direct effects on the human leukemia cells.

To further document the indirect immune-mediated anti-leukemic properties of IFNα2, we generated an experimental T-ALL model that could be exploited to monitor leukemia progression both in an immunocompetent as well as an immunodeficient background. For this, we intercrossed the Lck-cre^{TA};Pten^{fl/fl} spontaneous murine T-ALL model¹⁰ with a ROSA26-eGFP/luciferase reporter line¹¹ on a pure C57BL/6 background and derived 8 primary murine T-ALL cell lines from diseased mice (Supplemental Figure S1C). Similar as for the human T-ALL cell lines, a variable anti-proliferative effect with increased percentages of apoptotic cells was observed when murine T-ALLs were treated for 3 days in vitro with increasing concentrations of recombinant mouse interferon alpha-2 (mIFNα2) (Supplemental Figure S1D-E). Subsequently, we transplanted the murine T-ALL cell lines in both immunodeficient NSG as well as immunocompetent syngeneic mice and treated them with intraperitoneal injections of 30 μg mIFNα2/mice or vehicle for 7 consecutive days (Figure 1C). As the injected T-ALL lymphoblasts express the eGFP-Firefly luciferase reporter from the Rosa26 promoter, leukemic burden could be efficiently monitored using in vivo bioluminescence imaging.¹¹ mIFNα2 treatment resulted in a significant reduction of the leukemic burden, and prolonged survival of both immunodeficient and immunocompetent mice transplanted with murine T-ALL.

Notably, the therapeutic efficacy of mIFNα2 was consistently higher in the presence of an intact immune system (Figure 1C), suggesting an additive immune-mediated anti-leukemic effect. To uncouple these direct and putative indirect anti-leukemic properties of mIFNα2, we used our recently developed cell-type specific Activity-on-Target interferons (Actaferons; AFN).^{7,12-15} To obtain these AFNs, we fused the hIFNa2^{Q124R}, a human IFNα2 mutation that enables binding to the murine interferon receptor complex with a 100-fold reduced affinity compared to wild type mIFNα2, to VHH single domain antibodies targeting the murine CD8 (mCD8-AFN). We specifically chose the mCD8-AFN, as this CD8a epitope is not only present on 40% of T-ALL cases, but also on mouse classical dendritic cell type 1 (cDC1) which are particularly important for eliciting a CD8⁺ CTL response to kill cancerous cells upon IFNα2 stimulation.¹² Evaluating the therapeutic effects of the mCD8-AFN on both CD8⁺ versus CD8⁺ T-ALLs in an immunocompetent versus immunodeficient background, allowed us to dissect the roles of the direct versus indirect anti-
leukemic actions of IFNα2. To compare our results to a wild type (WT) IFNα2 with a similar molecular weight as the AFNs, we coupled this cytokine to an sdAb targeting Bcl110, an epitope that is absent in mice (mlIFNα2-WT). As expected, the mCD8-AFN had only an anti-proliferative effect on the CD8⁺ T-ALLs and not on the CD8⁻ T-ALL cell lines in *vitro* (Supplemental Figure S2A-C), confirming its cell-specificity. To evaluate the cell-specific direct anti-leukemic properties of mCD8-AFN on the growth of murine CD8⁺ T-ALL in an *in vivo* context, we transplanted both CD8⁺ and CD8⁻ T-ALL cell lines in immunodeficient NSG mice. As expected, the mCD8-AFN had a significant direct anti-leukemic effect only on the CD8⁺ T-ALL cell line, with a significant decrease of bioluminescence during the treatment and prolonged survival (Figure 2A). Of note, the direct anti-leukemic effect of the mCD8-AFN was more efficient than the wild type mlIFNα2 (Supplemental Figure S3). As AFNs do not efficiently bind the ubiquitously expressed interferon receptor complex, they will not be cleared from the circulation before reaching their desired target population. This so-called ‘sink-effect’ can explain the improved direct anti-leukemic effect seen with the AFN.

As the CD8α epitope of the mCD8-AFN is also present on cDC1 cells, which have been shown to be superior in antigen cross-presentation, and on effector CD8⁺ T-cells necessary to kill tumor cells, we hypothesized that the mCD8-AFN would also be able to induce an indirect anti-leukemic response. To test this, we repeated the experiment in an immunocompetent background. As an indirect immune-mediated effect would be independent of the immunophenotype of the T-ALL cells, we hypothesized that, in this setting, we would observe an anti-leukemic effect of the mCD8-AFN on both CD8⁻ and CD8⁺ T-ALLs. However, no effect could be seen on the CD8⁻ T-ALL, only on the CD8⁺ T-ALL (Figure 2B), indicating that mCD8-AFN has only direct anti-leukemic T-ALL properties, and is not able to induce an indirect immune-mediated anti-leukemic response.

The inability of mCD8-AFN to elicit an immune-mediated anti-leukemic response could be either due to mature T-cell aplasia and leukemia progression in these mice, or due to the intrinsic nature of the AFN. Therefore, we tested the anti-leukemic properties of a second AFN, mClec9a-AFN, which we previously used to efficiently induce a cDC1-mediated anti-tumor response in the context of melanoma, breast carcinoma and lymphoma. As Clec9A is not expressed in normal or malignant T-cells, no direct anti-leukemic properties could be observed *in vitro* (Supplemental Figure S2A-C) or *in vivo* in immunodeficient NSG mice (Figure 3A). To evaluate the indirect immune-mediated anti-leukemic effects of mClec9A-AFN, we repeated the experiment in syngeneic C57BL/6 mice (7 mice/group). This time, a significant indirect effect could be seen on
the leukemic progression in the transplanted mice, irrespective whether they were transplanted with CD8+ or CD8- T-ALL (Figure 3B). These data demonstrate that mClec9A-AFN is able to induce a strong immune-mediated anti-tumor response. However, we currently cannot explain why we see a difference between mCD8-AFN and mClec9A-AFN in ability to induce an indirect immune-mediated anti-leukemic effect. In the mouse, the Clec9A-epitope is also present on CD8+ immune cell subtypes, which may contribute to the immune-response. Alternatively, the binding of the CD8-AFN on CTLs may (partially) hamper their cytotoxic functions, although the anti-CD8 sdAb that was used for the design of the mCD8-AFN was demonstrated to be a non-neutralizing antibody.15

Finally, the adverse side-effects (body weight loss and haematological deficiencies) observed in mice treated with mIFNα2-WT were significantly reduced in mice treated with the AcTαferons (Supplemental Figure S2D-E), as shown before.7,12-13

Altogether, we used preclinical mouse models of T-ALL to show that immunocytokines with cell-specific activity can preserve the anti-leukemic properties of IFNα2 with a concomitant reduction of systemic toxic side effects. As such, these AcTαferons can be used as i) a direct anti-leukemic agent in combination with classical chemotherapy, or ii) as off-the-shelf targeted immunotherapy for T-cell malignancies.
References
Figure legends

Figure 1: anti-leukemic effects of interferon alpha-2 on the progression of human and murine T-ALL in vivo. (A) Flow cytometric analysis of phospho-STAT1 (pSTAT1) levels in 3 established T-ALL patient-derived xenografts after 30 min. ex vivo stimulation with 100 ng hIFNα2. (B) Direct anti-leukemic effects of recombinant hIFNα2 treatment (7 consecutive days with 30μg/mouse) versus vehicle on IFNα responsive (PDX#1) and non-responsive (PDX#3) T-ALL PDX model transplanted in NSG mice (5 mice/group). Effect on leukemia progression was measured by flow cytometric quantification of the percentage of hCD45+ cells in peripheral blood (left) and Kaplan-Meier survival curve (right) (C) Anti-leukemic effects of recombinant mIFNα2 treatment (7 consecutive days; 30μg/mouse) versus vehicle control (PBS) on in vivo progression of murine T-ALL cell line transplanted in immunodeficient NSG animals or immunocompetent syngeneic C57BL/6 animals. Leukemia burden was quantified via in vivo bioluminescence imaging during treatment (right) and Kaplan-Meier survival curve (left).

Figure 2: mCD8-AFN has direct but no indirect immune-mediated anti-leukemic properties on murine T-ALL. (A) Anti-leukemic effect of mCD8-AFN treatment (7 consecutive days; 30μg/mouse) versus vehicle (PBS) on in vivo progression of CD8− and CD8+ murine T-ALL cell lines transplanted in immunodeficient NSG mice or (B) in syngeneic C57BL/6 mice. Leukemic burden was quantified via in vivo bioluminescence imaging during treatment regime (right) and Kaplan-Meier survival curve (left).

Figure 3: mClec9A-AFN has indirect but no direct anti-leukemic properties on murine T-ALL. (A) Anti-leukemic effect of mClec9A-AFN treatment (7 consecutive days; 30μg/mouse) versus vehicle (PBS) on in vivo progression of CD8− and CD8+ murine T-ALL cell lines transplanted in immunodeficient NSG mice or (B) in syngeneic C57BL/6 mice. Leukemic burden was quantified via in vivo bioluminescence imaging during treatment regime (right) and Kaplan-Meier survival curve (left).
Figure 1

A. PDX#1, PDX#2, PDX#3

B. PDX#1 (hIFNα2 responsive)

- PBS
- hIFN

Survival

7 x 30μg hIFNα2
7 x PBS

P = 0.0187

Days

C. murine T-ALL cells
HOST: NSG mice

Percent survival

PBS
milFNα2

7 x 30μg milFNα2
7 x PBS

P = 0.004

Days

D. murine T-ALL cells
HOST: C57BL/6 mice

Percent survival

PBS
milFNα2

7 x 30μg milFNα2
7 x PBS

P = 0.0001

Days

Figure 2

murine T-ALL cells
HOST: NSG mice

Percent survival

PBS
milFNα2

7 x 30μg milFNα2
7 x PBS

P = 0.004

Days

Figure 3

murine T-ALL cells
HOST: C57BL/6 mice

Percent survival

PBS
milFNα2

7 x 30μg milFNα2
7 x PBS

P = 0.0001

Days

Figure 4

murine T-ALL cells
HOST: NSG mice

Percent survival

PBS
milFNα2

7 x 30μg milFNα2
7 x PBS

P = 0.004

Days
Figure 2

A. T-ALL cells: CD8-
HOST: NSG mice

B. T-ALL cells: CD8-
HOST: C57BL/6 mice

Average Radiance (px/cm²/sr)

PBS

mCD8-AFN

Luminescence

A. T-ALL cells: CD8+
HOST: NSG mice

B. T-ALL cells: CD8+
HOST: C57BL/6 mice

Percent survival

days

day 0 day 4 day 7

day 0 day 4 day 7

Average Radiance (px/cm²/sr)
Figure 3

A. T-ALL cells: CD8-
HOST: NSG mice

Percent survival

<table>
<thead>
<tr>
<th>Days</th>
<th>PBS-treated</th>
<th>mClec9A-AFN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>20</td>
<td>100</td>
<td>70</td>
</tr>
<tr>
<td>30</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>40</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Average Radiance (ps/cm²/sr)

<table>
<thead>
<tr>
<th>Days</th>
<th>PBS-treated</th>
<th>mClec9A-AFN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10^3</td>
<td>10^4</td>
</tr>
<tr>
<td>7</td>
<td>10^4</td>
<td>10^5</td>
</tr>
</tbody>
</table>

B. T-ALL cells: CD8-
HOST: C57BL/6 mice

Percent survival

<table>
<thead>
<tr>
<th>Days</th>
<th>PBS-treated</th>
<th>mClec9A-AFN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>70</td>
</tr>
<tr>
<td>20</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>40</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>60</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>80</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Average Radiance (ps/cm²/sr)

<table>
<thead>
<tr>
<th>Days</th>
<th>PBS-treated</th>
<th>mClec9A-AFN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10^3</td>
<td>10^4</td>
</tr>
<tr>
<td>7</td>
<td>10^4</td>
<td>10^5</td>
</tr>
</tbody>
</table>

P-values:

- A: PBS-treated vs. mClec9A-AFN: P=0.0034
- B: PBS-treated vs. mClec9A-AFN: P=0.0123