Ionophore-mediated swelling of erythrocytes as a therapeutic mechanism in sickle cell disease

by Athena C. Geisness, Melissa Azul, Dillon Williams, Hannah Szafraniec, Daniel C. De Souza, John M. Higgins, and David K. Wood

Received: March 8, 2021.
Accepted: October 18, 2021.

Publisher's Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
Ionophore-mediated swelling of erythrocytes as a therapeutic mechanism in sickle cell disease

Athena C. Geisness1*, Melissa Azul1-2*, Dillon Williams1, Hannah Szafraniec1, Daniel C. De Souza3, John M. Higgins3,4,5, and David K. Wood1**

1Department of Biomedical Engineering, University of Minnesota Twin Cities, Minneapolis, MN 55455
2Department of Pediatric and Adolescent Medicine, Division of Pediatric Hematology-Oncology, Mayo Clinic, Rochester, MN 55905
3Department of Systems Biology, Harvard Medical School, Boston, MA 02115
4Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115
5Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115

*Contributed equally as authors
**Correspondence should be addressed to: dkwood@umn.edu

Acknowledgments
Portions of this work were conducted in the Minnesota Nano Center, which is supported by the National Science Foundation through the National Nano Coordinated Infrastructure Network (NNCI) under Award Number ECCS-1542202. We would like to thank National Heart Lung and Blood Institute for their support under Grant No. and HL132906, and Chhaya Patel and Hasmukh Patel for assistance with blood sample collection according to IRB protocol 2006P000066/PHS and STUDY0000003. There are no conflicts of interest to disclose.

Word count: 3682 Abstract (235) Text (3678) Fig (4) Table (1)

Supplementary Files: 1

Contributions
ACG, MA, DW, HS, and DCD performed research and data analysis. ACG, DW, HS, DCD, JMH and DKW designed the studies. ACG, MA, DW, DCD, JMH and DKW wrote the manuscript.

Disclosures
The authors have nothing to disclose.
Abstract

Sickle cell disease (SCD) is characterized by sickle hemoglobin (HbS) which polymerizes under deoxygenated conditions to form a stiff, sickled erythrocyte. The dehydration of sickle erythrocytes increases intracellular HbS concentration and the propensity of erythrocyte sickling. Prevention of this mechanism may provide a target for potential SCD therapy investigation. Ionophores such as monensin can increase erythrocyte sodium permeability by facilitating its transmembrane transport, leading to osmotic swelling of the erythrocyte and decreased hemoglobin concentration. In this study, we treated thirteen blood samples from patients with SCD with 10 nM of monensin ex vivo. We measured changes in cell volume and hemoglobin concentration in response to monensin treatment, and we perfused treated blood samples through a microfluidic device that permits quantification of blood flow under controlled hypoxia. Monensin treatment led to increases in cell volume and reductions in hemoglobin concentration in most blood samples, though the degree of response varied across samples. Monensin treated samples also demonstrated reduced blood flow impairment under hypoxic conditions relative to untreated controls. Moreover, there was a significant correlation between the improvement in blood flow and the decrease in hemoglobin concentration. Thus, our results demonstrate that a reduction in intracellular HbS concentration by osmotic swelling improves blood flow under hypoxic conditions. Although the toxicity of monensin prevents it from being a viable clinical treatment, these results suggest that osmotic swelling should be investigated further as a potential mechanism for SCD therapy.
Introduction

Sickle cell disease (SCD) is an inherited blood disorder that affects approximately 100,000 Americans in the United States and decreases a patient’s life expectancy by 30 years. The disease is caused by a genetic mutation in the beta globin gene which produces sickle hemoglobin (HbS). HbS can polymerize under deoxygenated conditions forming stiff, sickled red blood cells (sRBC). The presence of sRBCs contributes to the key elements of SCD pathology: hemoglobin polymerization, endothelial dysfunction, sterile inflammation, leading to overall disruption of blood flow particularly in the microvasculature. These processes ultimately give rise to the vast clinical manifestations seen in SCD including vaso-occlusive episodes (VOE), acute chest syndrome, and stroke. The complex pathophysiology of SCD requires the development of treatments that target one or more of the molecular disease pathology mechanisms.

Given that HbS polymerization is essential in the pathophysiology of SCD, treatments to prevent HbS polymerization continue to be an area of investigation for therapeutic development. Hydroxyurea, the first drug approved by the Food and Drug Administration (FDA) for the treatment of SCD, induces production of fetal hemoglobin (HbF), an anti-sickling hemoglobin. Though available for decades, patients treated with hydroxyurea experience variable clinical benefit and are subject to ongoing monitoring given its hematologic side effects.

Recently, another anti-sickling agent, voxelotor, was approved by the FDA for the treatment of SCD. Voxelotor stabilizes the oxygenated form of HbS by increasing hemoglobin’s oxygen affinity, preventing polymerization when exposed to deoxygenated conditions. Research is still ongoing to determine voxelotor’s potential side effects and clinical benefit. In its phase III clinical trial, patients randomized to receiving voxelotor did experience an increase in hemoglobin after 6 months of use, but they did not have a reduction in VOEs. While treatments that inhibit polymerization such as voxelotor or hydroxyurea have been successful, therapeutics that target polymerization without affecting hemoglobin oxygen affinity or targeting the hematopoietic niche may provide similar clinical benefit without the side effects seen with these drugs.

An alternative mechanism to inhibit HbS polymerization is the reduction of intracellular HbS concentration within a sRBC. Small decreases in HbS concentration can lead to slower polymerization rates that are longer than sRBC capillary transit time. Previous studies to reduce HbS concentration include using antidiuretic hormone and a low sodium (Na) diet to reduce plasma osmolality and Na concentration. This caused hypotonic swelling of sRBCs and a reduction in mean cell hemoglobin concentration (MCHC), ultimately leading to decreased erythrocyte sickling observed in 3 patients. However, maintaining the necessary level of hyponatremia was impractical and results could not be reproduced in later studies. Rather than decreasing plasma sodium and osmolality as a method to reduce MCHC and HbS polymerization, increasing intracellular sodium and osmolality may be more feasible. This produces similar osmotic swelling effects and decreases MCHC without the difficulties of sustaining low plasma Na concentrations. To study this mechanism and its potential benefit in SCD, ionophores that increase the erythrocyte permeability to Na, such as monensin, can be used...
to facilitate intracellular Na transport. Monensin selectively binds to Na$^+$ ions and facilitates its electrogenic transport across the erythrocyte membrane, creating an osmotic gradient and causing an influx of fluid intracellularly$^{16-18}$. Previous work in sRBCs treated with monensin have demonstrated that monensin is effective at increasing mean corpuscular volume (MCV), decreasing MCHC, and increasing deformability of sRBCs$^{19-21}$. These studies provided a basis for understanding the molecular effects of monensin on RBCs, however they did not examine how these molecular changes impact the mechanics of RBC flow under physiologic conditions.

In this study, we use monensin as a model compound to investigate osmotic swelling to reduce MCHC as a potential mechanism for SCD therapy development. We aim to characterize the effects of sRBC osmotic swelling and reduced MCHC on sRBC rheologic oxygen dependence using a microfluidic device designed to recapitulate the physiological environment of the microvasculature. We compare the rheological response to hypoxia in our microfluidic device between blood samples treated with monensin and untreated controls. To further quantify its effect, we correlate MCV, MCHC, and the rheological response to hypoxia. By studying the effect monensin may have on rheology, we build upon previous monensin studies and are now able to better capture the complex pathophysiologic changes in blood flow that occur with deoxygenated conditions in a physiologically relevant system, gaining a more comprehensive understanding of the potential therapeutic mechanism and its in vivo effects.

Methods

Monensin Treatment

All study protocols were approved by the Institutional Review Board (IRB). In preparation for monensin treatment (Fig 1A), RBCs were washed three times by centrifugation in Buffer A solution (104mM NaCl, 32mM Na$_2$HPO$_4$, 8mM KH$_2$PO$_4$, 5.5mM dextrose, 1g/L BSA; pH 7.4, 305mOsm) with techniques previously published18. Dextrose and BSA components of the Buffer A solution were added on the day of experiments. Samples were resuspended in Buffer A with 0.01% EtOH and 10nM monensin (420701, BioLegend) to achieve 25% hematocrit (hct) and incubated at 37°C for 12hrs. A concentration of 10 nM monensin was chosen based on previous studies demonstrating optimal cellular effect without increased hemolysis19. Preliminary research shows that incubation in Buffer A between 6 and 24hrs limits RBC swelling in controls to less than 5% MCV. While the effect of 0.01% EtOH on RBCs has been previously studied to be insignificant$^{22-24}$, a control resuspended in Buffer A and 0.01% EtOH was used for each sample in this study. After incubation, the sample was washed with phosphate buffered saline (PBS) to remove extracellular monensin and resuspended in PBS to achieve 25% hct prior to rheology measurements. Details of blood sample collection, storage, and methods of obtaining laboratory values are provided in the supplement.

Data Collection and Analysis

Device design, fabrication, and experimental set up have been previously published$^{24-26}$ and is detailed in the supplement. Continuous rheological data were captured using a high-speed camera (GS3-U3-23S6M-C, FLIR) at a frame rate of 500-600 FPS (frames per second) at 40x magnification. Blood flow velocity measurements were collected using a contrast detection
algorithm developed in MATLAB based on the Kanade-Lucas-Tomasi algorithm27-29. The velocity of thousands of contrasting points per frame were identified and averaged to obtain an average velocity per frame. Representative data in figure 1B demonstrates blood flow velocity under normoxic and hypoxic conditions for a control and monensin treated sample. Each sample was exposed to 1 minute of normoxia (160 mmHg) and then 1 minute of hypoxia (0 mmHg). This oxygenation-deoxygenation cycle was then repeated for a total of 3 cycles. Average steady state (SS) velocity at normoxia or hypoxia was determined by averaging the velocities of the 3 cycles at each oxygen tension for each sample. The average SS velocity value was used to determine two velocity metrics used for analysis: velocity response and recovery. Velocity response is defined by the difference between the average SS velocity at 160mmHg and 0 mmHg oxygen. The response is normalized by the sample’s average velocity at 160mmHg oxygen tension (Fig 1C) and indicates the magnitude of velocity reduction during deoxygenation. Velocity recovery is defined by the difference in velocity response between treatment and the untreated control and indicates the change in velocity reduction during deoxygenation due to treatment.

Statistical analysis

A Wilcoxon signed-rank test is used to establish significant difference between control and treatment groups (n=13) A Pearson’s product moment correlation coefficient is used to describe the linear correlation (n=13). Significance was defined by a $p < 0.05$.

Results

MCHC Strongly Correlates with Rheologic Response to Hypoxia

A total of 13 samples from patients with SCD were obtained and used in experimentation. A summary of corresponding patient demographic, clinical, and baseline laboratory data are shown in Table 1. Several different sickle cell genotypes were included in the cohort. When oxygenation was decreased from 160mmHg to 0mmHg, all untreated sickle samples responded with velocity reduction to a specific steady state velocity. When oxygen tension was restored back to 160mmHg, blood flow velocity then increased and returned to its SS velocity prior to deoxygenation. Similar velocity response was replicated with repeated cycles of deoxygenation. The conductance of each sample at normoxia and hypoxia were calculated in each treatment condition to ensure non-significant differences in sample preparation and device variability between experiments (Supplement, Fig S2). In contrast, oxygen-dependent velocity was not observed in healthy, AA, blood controls (Supplement, Fig S3a). To identify a parameter which may dictate a sample’s velocity response to hypoxia, we first determined if MCHC and MCV were independent variables within the thirteen untreated sickle samples. There was no correlation between MCV and MCHC (Fig 2A, $r=-0.008$, $p=0.982$), as MCHC is maintained between 30-36g/dL within RBCs of varying sizes. These MCHC values are consistent with low to normal adult MCHC values typically seen in SCD30 and support previous work demonstrating that native MCV values have no correlation with native MCHC values in SCD31. This supports that MCV and MCHC are likely independent variables and may individually influence the rheological response. To determine the influence of these
variables on samples’ velocity response, we compared MCV or MCHC with each sample’s velocity response. There is a slight negative relationship between velocity response and MCV amongst the thirteen untreated samples, though this correlation was not significant (Fig 2B, r=-0.13, p=0.660). There was, however, a significant positive relationship when correlating velocity response and MCHC (Fig 2C, r=0.83, p=0.001), as untreated samples with lower MCHCs had smaller velocity responses when exposed to hypoxia. Collectively, this data corroborates previous work by others demonstrating that cell volume does not strongly correlate with the rheological response and rather it is hemoglobin concentration that is strongly correlated with sample blood flow response

Monensin Increases sRBC MCV, Decreases MCHC, and Reduces Hypoxia-induced Polymerization

To determine the effect of monensin on sRBCs, MCV and MCHC values pre- and post-treatment were collected of all 13 SCD samples and shown in figures 3A-3B. Overall, the monensin treated samples had significantly increased MCV (Fig 3A) and decreased MCHC (Fig 3B) when compared to the controls (p<0.01). The significant effects in MCV and MCHC were also observed when treating 3 healthy, AA blood controls with monensin as well (Supplement, Fig S3b). Throughout the sample cohort, the effect of monensin on MCV and MCHC widely varied between samples. Some samples had large differences in MCV and MCHC after monensin treatment (sample IDs 11, 12). Sample 11 experienced the largest change in both MCV and MCHC after treatment and was from a patient with HbSB⁺ thalassemia. Sample 12 also experienced large changes in MCV and MCHC and came from a patient who had been recently transfused with a severe clinical phenotype. Others demonstrated only minor changes (sample IDs 3, 7). Sample 3 came from a patient with SC disease and sample 7 was from a patient with HbSB⁰. Given that monensin drives cell swelling, measured by MCV, and decreases hemoglobin concentration, measured by MCHC, these results reflect the degree in which the sample was affected by monensin.

Given the observed changes in MCV and MCHC with monensin treatment, to further demonstrate the mechanism of cell swelling to reduce sickle pathophysiology, we analyzed the morphology of cells from 3 additional sickle blood samples under shear flow and controlled oxygen tension using a previously published microfluidic chip. A full description of the device and the methodology as well as the samples’ baseline hematological laboratory data can be found in the supplemental methods and figures (Supplemental, Table S1). Monensin reduced the fraction of cells containing polymer when exposed to hypoxic oxygen tensions in all samples (Supplement, Fig S4). However, similar to the effect observed on MCV and MCHC, the amount monensin reduced polymerized cells in hypoxia varied between samples.

Monensin Treatment Improves Rheological Response to Hypoxia

To quantify the effect of monensin on sRBC blood flow velocity in a hypoxic environment, we examined the velocity response to 0 mmHg oxygen tension between treated and untreated samples for the thirteen SCD blood samples. In monensin-treated samples, there was a significant decrease in velocity response with deoxygenation compared to that of untreated
controls (p<0.01, Fig 3C), indicating the efficacy of monensin in decreasing sRBC sensitivity to hypoxia. However, there was variability in the degree of response to monensin treatment across all samples. For example, in sample ID 11, monensin treatment eliminated almost all blood flow velocity oxygen dependence demonstrated by no velocity response to hypoxia compared to a 40% response in the control. This contrasts with sample IDs 3 and 5, where there was no monensin effect on blood flow velocity response when compared to the untreated control. In AA samples, there was no change in velocity response between monensin-treated and untreated controls, despite the significant changes in MCV and MCHC after monensin treatment (Supplement, Fig 3).

Reduction in MCHC is Critical in Improving Rheologic Response to Hypoxia

To objectively determine whether the magnitude of the monensin-induced changes to MCHC or MCV affects the magnitude of change in velocity response to hypoxia, we compared the linear correlation between MCV or MCHC change induced by monensin and the velocity recovery of each sample. By using the absolute change in MCV and MCHC, the analysis removes the variability of each sample’s initial MCV and MCHC and controls for patients’ baseline heterogenous clinical severity. First, we ensured correlation between MCV increases and MCHC decreases in the monensin-treated samples. In Figure 4A, there was a significant positive correlation between MCV change and MCHC change (r=0.91, p< 0.001), in that large MCV increases due to monensin corresponded with large MCHC reductions. This demonstrates cell swelling is an effective method to decrease MCHC. When comparing the degree in which MCV was increased by monensin and velocity recovery we found a significant positive correlation (Fig 4B, r=0.87, p< 0.001). A more significant positive relationship is seen when comparing the degree to which monensin decreased MCHC and sample recovery (Fig 4C, r=0.96, p< 0.001), in that the largest improvements in sample velocity response to hypoxia correlated with larger reductions in MCHC. These relationships reveal that the degree to which monensin affects sample sensitivity to hypoxia is strongly dependent on the degree to which the MCHC is reduced.

Discussion

In this study, we examined osmotic cell swelling to decrease intracellular HbS concentration as a potential mechanism to be targeted for future therapeutic development in SCD. We used a model Na ionophore compound, monensin, to treat SCD blood samples ex vivo. The samples were exposed to hypoxic conditions in a microfluidic device while blood flow was quantified. Though previous studies conducted in the early 1980’s demonstrated monensin’s ability to decrease sRBC MCHC19, monensin’s impact on dynamic blood flow, particularly in hypoxic environments, was not explored. Furthermore, deformability measurements were made through ektacytometry which may allude to improved rheology, however monensin’s global effect on blood flow was not directly measured. Additionally, more recent research reports ektacytometry deformability measurements are unreliable in predicting the ability of RBC perfusion of a microvascular network. Given that MCHC reduction was initially hypothesized to reduce polymerization and decrease vaso-occlusion, investigating monensin’s effect on dynamic flow rheology is critical to understanding whether the mechanism has a role in future
therapeutic development. Using our microfluidic platform, we were able to observe and quantify monensin’s effect of reduced MCHC on blood flow by measuring rheologic variables in a dynamic, physiologically relevant system. In our study, we not only found that monensin decreased MCHC, but we also report that it significantly decreased the sensitivity of SCD blood flow to hypoxia compared to controls. The velocity recovery with monensin treatment varied between samples which correlated to the variation in monensin-induced changes in MCHC. Through the rheological measurements obtained in this study, we provide both novel insight into the capability of this mechanism in the prevention of vaso-occlusion but also provide findings to suggest patient response variability.

While osmotic swelling and increases in MCV is the primary effect of the ionophore treatment, we found that the magnitude of MCHC reduction is the primary parameter modifying blood flow response to hypoxia. This is demonstrated by the significant correlation found between reduction in MCHC and reduction in velocity response (Fig 4C). When comparing response with MCV, the relationship is not as strongly correlated (Fig 4B). This corroborates existing studies which demonstrate that polymerization rates are extremely dependent on HbS concentration. Additionally, we found that in the 4 samples that demonstrated insignificant change in velocity response when treated with monensin compared to controls (Sample IDs 3, 5, 7, and 10), there was less than a 5% MCHC decrease. It is unclear what caused the observed patient variability in MCV/MCHC response to monensin, however our data suggests that decreasing the MCHC by 5% has a significant impact on the sample’s blood flow in hypoxia. Future studies that examine reduction of MCHC as a mechanism for SCD treatment should use a minimal threshold in MCHC reduction to guide drug efficacy.

This study investigated the mechanism of osmotic swelling to decrease intracellular MCHC thereby decreasing HbS polymerization. Similarly, previous SCD drug trials have focused on decreasing intracellular MCHC by inhibiting ion channels that are involved in the pathologic dehydration of sRBCs. Clotrimazole, an inhibitor of the Gardos channel which contributes to sRBC water loss, demonstrated reduced sRBC dehydration, decreased MCHC, and mild improvements in hemoglobin when taken by five SCD patients. Patients on Senicapoc, a similar Gardos channel inhibitor, also experienced significant increases in hemoglobin and hematocrit in a phase II clinical trial. Despite these promising results, studies involving Senicapoc were terminated early due to limited efficacy when no significant improvement in the rate of VOEs were seen in those taking Senicapoc compared to those on placebo. While reductions in MCHC may correlate with reductions in polymerization-induced hemolysis and increased hemoglobin, it does not appear to be as correlated to frequency of VOEs and implies that hemolysis and vaso-occlusion are distinct, yet intertwined, pathologic mechanisms. Further, although reductions in MCHC have been shown to decrease rigidity and stiffness of sRBCs, over-swelling of sRBCs by exposure to hypotonic solutions has also led to increased vaso-occlusions in in vitro models. Therefore, while the mechanism of osmotic swelling has been beneficial to distinct aspects of SCD pathology, it may not be effective or potentially problematic. Given that previous compounds have attempted to exploit a similar mechanism tested in this study but have ultimately proven unsuccessful due to a lack of reduction in VOEs, the ability to determine how a compound affects blood flow, particularly in deoxygenated
conditions like that of a VOE, is important in predicting its potential clinical success. Therapeutics that demonstrate improvement in overall blood rheology rather than on a single SCD pathophysiologic mechanism are likely to provide more benefit in reducing VOE frequency. By using microfluidic technology in this study, we can characterize the effect of monensin on velocity response and demonstrate that the mechanism improves rheological behavior. Although monensin cannot be used as an agent for SCD treatment due to its lethal complications identified by the OSHA Hazard Communication Standard (29 CFR 1910.1200), this study motivates development of other compounds that may have similar osmotic swelling effects on erythrocytes for SCD treatment.

A potential concerning side effect of this treatment mechanism includes increased blood viscosity due to increased cell volume and hct. With increased viscosity, the potential for VOE is amplified. Viscosity, however, is dependent on several factors such as hct, RBC deformability and aggregation. Previous studies demonstrate with decreased MCHC, sRBC deformability increases. Additionally, it has been reported that cell stiffness has a greater influence on blood viscosity than hct and as previously mentioned, monensin treatment has demonstrated increased sRBC deformability when compared to untreated controls. Patients treated with hydroxyurea also experience an increase in MCV without association of worsening outcomes. Additionally, although our study does not control for post-monensin increase in hct, we still demonstrate improved rheological behavior. Therefore, while osmotic sRBC swelling may increase viscosity, RBC deformability appears to be stronger determining factor in overall blood viscosity.

Our study is limited by primarily demonstrating correlative relationships with little experimentation on causation. However, previous work demonstrating increases in RBC deformability and decreases in sRBC fraction with monensin treatment, support the reduced rheological response to hypoxia observed in this study. While we demonstrate that decreasing MCHC by erythrocyte osmotic swelling successfully reduces sRBC oxygen dependent flow, this study does not capture the complex biological interactions between the many other cellular components involved in the pathophysiology of SCD. For example, in our experiments, we used washed red cells rather than whole blood. Previous studies found that monensin had a reduced effect on sRBCs in the presence of plasma and required significantly increased concentrations to replicate improved deformability, indicating that the drug likely binds across plasma constituents. While using patient plasma may be helpful in determining concentration of monensin to observe rheological improvement, this study was to demonstrate the efficacy of the mechanism of MCHC reduction to improve sRBC rheological behavior. Should further studies exploring this mechanism be conducted, or for future therapeutic development, agents that specifically target RBC Na permeability by RBC-specific cation channels or transport would be of priority to reduce effect on other potential cellular components. Additionally, the endothelium is particularly of interest given that increased RBC deformability has been shown to increase endothelial adhesion and may contribute to the occurrence of VOEs and clinical severity. Further studies examining the effect of MCHC reduction on adhesion and inflammation are needed to assess the potential benefit of this therapeutic mechanism. As discovery of SCD pathophysiology reveals more intricate biological pathways and multifaceted systems
simultaneously at play, the approach to treatment may require an equally multifaceted, multi-drug approach. By combining a therapy that reduces MCHC and polymerization with an anti-adhesion therapy, perhaps further benefit may be achieved. Studies are needed to determine the advantages of a multi-agent approach, however similar strategies have already been successful in HIV therapy, cardiology, and oncology.

Conclusion

The reduction of MCHC through osmotic swelling of a sickle erythrocyte can effectively decrease the rheological dependence on oxygenation. Blood flow velocity measurements within microfluidic channels, of physiologic dimensions, indicate a strong correlation between MCHC reduction and reduction of blood flow sensitivity to hypoxia. These relationships may indicate the potential efficacy of regulating MCHC as a targeted mechanism for SCD therapeutic development.
References

Table 1. Patient Demographics and Laboratory Values

<table>
<thead>
<tr>
<th>Variable</th>
<th>N (13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotype</td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td>7</td>
</tr>
<tr>
<td>SC</td>
<td>2</td>
</tr>
<tr>
<td>SB<sup>0</sup></td>
<td>3</td>
</tr>
<tr>
<td>SB<sup>+</sup></td>
<td>1</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
</tr>
<tr>
<td>Median (range 23-42)</td>
<td>27</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>6</td>
</tr>
<tr>
<td>Female</td>
<td>7</td>
</tr>
<tr>
<td>Hydroxyurea</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>12</td>
</tr>
<tr>
<td>No</td>
<td>1</td>
</tr>
<tr>
<td>Clinical History</td>
<td>Median</td>
</tr>
<tr>
<td>Transfusion*</td>
<td>2</td>
</tr>
<tr>
<td>Hospitalizations*</td>
<td>1</td>
</tr>
<tr>
<td>Laboratory Values</td>
<td></td>
</tr>
<tr>
<td>Hematocrit (%)</td>
<td>21.9</td>
</tr>
<tr>
<td>MCV (fL)</td>
<td>101.4</td>
</tr>
<tr>
<td>MCHC (%)</td>
<td>33.3</td>
</tr>
<tr>
<td>HbA (%)</td>
<td>15.8</td>
</tr>
<tr>
<td>HbS (%)</td>
<td>67.8</td>
</tr>
<tr>
<td>HbF (%)</td>
<td>7.5</td>
</tr>
</tbody>
</table>

* # of transfusions or hospitalizations within the last year
Figure Legends

Figure 1: Data collection and analysis. An overview of methods of sample preparation, data collection, and defining rheological variables used throughout the study. (A) Schematic of the monensin treatment workflow. (B) Representative image of raw velocity data (below) as it relates to oxygen tension (above) from a single SCD patient sample. In the bottom panel of (B), blood flow velocity is compared between monensin treatment (red) and the untreated control (blue). The average oxygenated shear rate during experiments was 355 s⁻¹, within physiologic range for channel dimensions⁴⁶. In this sample, it appears that the velocity at normoxia of the monensin-treated condition is lower than that of the untreated condition. To address the differences in normoxic velocities between treatment conditions, conductance of all 13 samples was calculated to determine if additional variables were present contributing to normoxic velocities (Supplement, figure S3). There were no significant differences in conductance at normoxia between treatment conditions in all samples, indicating velocity differences at normoxia were related to driving pressure. (C) The oxygenated (160 mmHg) and deoxygenated (0 mmHg) sections of the collected velocity data in (B), normalized by the average oxygenated steady state velocity for the representative sample. The representative single patient data in (C) demonstrates a 13% velocity response for a monensin-treated sample and a 33% response for the untreated control. This corresponds to a velocity recovery of 20% after monensin treatment. Velocity response is calculated using the difference between oxygenated (160 mmHg) and deoxygenated (0 mmHg) velocities and velocity recovery is calculated by the difference in the control and monensin treated response.

Figure 2: Dependent parameter analysis. Correlative data from 13 untreated SCD samples to determine the relationship, if any, between MCV and MCHC and each variable’s relation to sample velocity response. A Pearson correlation coefficient analysis was used to determine the strength of the linear relationship and a two-tailed analysis of the Pearson coefficient was used to determine significance of the correlation. (A) No correlation was identified between MCV and MCHC (r=-0.008, p=0.982), establishing MCV and MCHC as independent variables. (B) MCV as it relates to velocity response. No correlation was identified between MCV values and velocity response (r=-0.13, p=0.660). A slope of -0.001 and -0.1 are found in (A) and (B) respectively. The slope for these figures is provided for clarification of the scale for (A-B). (C) MCHC and velocity response had a significant correlation (r= 0.83, p <0.001).

Figure 3: Monensin treatment efficacy and variability. Summary data of monensin treatment. (A-B) The effect of monensin on MCHC and MCV. The monensin-treated group had significantly higher MCV and lower MCHC compared to the control group. (C) There was a significantly lower velocity response in the monensin-treated group compared to that in the control group. Significance between control and monensin-treated groups was determined using a Wilcoxon signed-rank test and indicated by the asterisks (*) denoting p <0.01. Sample ID represents the de-identified patient ID corresponding to the sample. Error bars indicate the standard deviation in velocity response over 3 oxygenation/deoxygenations cycles.

Figure 4: Linear correlation analysis. To determine which effect of monensin was driving sample velocity recovery, a correlation analysis to define the relationship between velocity recovery and monensin-induced MCV or MCHC change was completed. A Pearson correlation coefficient analysis was conducted to determine the strength of the linear relationship. (A)
Change in MCV and change in MCHC was significantly positively correlated ($r=0.91, p<0.001$). (B) Velocity recovery and MCV change also were positively significantly correlated ($r=0.87, p<0.001$). (C) The strongest correlation was found between velocity recovery and MCHC change ($r=0.96, p<0.01$).
A. Replace SN w/Buffer A + 0.01% EtOH → Incubate @37°C for 12 hrs → Centrifuge @300g x3 → Replace SN w/PBS → Control Group.

A. Centrifuge @300g → Replace SN w/Buffer A → Replace SN w/Buffer A + 10nM Monensin → Treatment Group.

B. PO2 (mmHg) vs. Time (min) and Velocity (um/s) for SS Control and Monensin Treated conditions.

C. Distribution of normalized velocity for SS Control and Monensin conditions with mean values.
Graph A shows a scatter plot of MCHC (g/dL) vs. MCV (fL) with a linear regression line of $m = -0.001$.

Graph B shows a scatter plot of Velocity Response (%) vs. MCV (fL) with a linear regression line of $m = -0.1$.

Graph C shows a scatter plot of Velocity Response (%) vs. MCHC (g/dL) with a linear regression line of $m^* = 4.23$.

Graphs A, B, and C are labeled with corresponding regression slopes.
Supplementary to Ionophore-mediated swelling of erythrocytes as a therapeutic mechanism in sickle cell disease (*Effect of osmotic swelling on sickle erythrocytes*)

Supplemental Methods

Patient Sample Collection

Blood samples were collected from patients with SCD or healthy volunteers for AA controls during routine clinic visits in accordance with protocol 2006P000066/PHS and STUDY0000003, approved by the University of Minnesota Medical Center Institutional Review Board (IRB). Baseline laboratory measurements displayed in table 1 and supplementary table 1 were obtained in the clinic on the day of sample collection and values were provided by patients’ medical providers. Blood samples were collected and stored at 4°C in sodium citrate blood collection tubes. Additional samples (n=3) used for morphology experiments were collected from patients with SCD and stored in ethylenediaminetetraacetic acid (EDTA). Samples were stored up to 5 days prior to treatment or experimentation.

Hematologic Parameter Analysis

After monensin treatment, the sample’s complete blood count (CBC) was analyzed using a Sysmex XS-1000i hematology analyzer, by the Advanced Research and Diagnostic Laboratory (ARDL) at the University of Minnesota. Monensin effect on osmotic swelling and intracellular water content was quantified by measuring MCHC and MCV.

Device Design and Fabrication

Once samples were prepared and hematologic measurements made, samples were perfused through a microfluidic device. The construction of similar devices has been described previously. The device is comprised of three polydimethylsiloxane (PDMS) (Sylgard 184, Dow Corning) layers: a blood channel, hydration, and gas layer, shown in supplemental figure 1. Each layer was designed to serve an intended function. The blood layer contains a channel which splits into a bypass and observation channel each measuring 15µm x 15µm with a length of 10mm (Figure S1a). These dimensions approximate the physiological diameter of some post-capillary venules within the microvasculature. The bypass channel was used to maintain flow to prevent packing of RBCs in the observation channel during potential occlusions. Stacked over the blood layer (Figure S1d) is a 100µm tall hydration layer (Figure S1c), where PBS is perfused to prevent dehydration of the RBCs during experimentation. The gas channel (Figure S1b) is 150µm in height and lies on top of the previously described two layers. The oxygen permeability of PDMS in this device has been previously reported. Each layer is separated by a 100 µm PDMS membrane.

Device fabrication involves photolithography techniques and use of negative photoresist (SU8, MicroChem) to create a silicon wafer master mold for each layer, as described in a previous publication. After developing the photoresist, wafers were salinized (448931-10G, Sigma-Aldrich) to decrease adhesion of the PDMS to the wafer. Each layer was then made by casting PDMS at an elastomer/curing agent ratio of 10:1 onto each master mold. For the gas layer, PDMS was cast onto the master mold to achieve a thickness of approximately 5mm. For the blood and hydration layers, previously described PDMS compression molding technique created each layer’s individual thickness. The PDMS layers were cured at 75°C for 2hrs. Inlets and outlets of the device were created using 20-gauge punches. A plasma cleaner was used to covalently bond each layer together by exposing PDMS surfaces for 2 minutes at a power of
100W. The entire device was then plasma bonded to a microscope glass slide. After plasma treatment, the devices were dehydrated to ensure secure bonding by placing them on a hotplate for 15 minutes.

Experimental Setup

Microfluidic devices were mounted on a temperature regulated (37°C) Zeiss Axio Observer microscope. Specific oxygen tensions were selected and perfused through the gas layer using a solenoid board and gas mixing system that mixed 160mmHg oxygen gas (21% O₂, 5% CO₂, balance N₂) with 0mmHg oxygen gas (5% CO₂, balance N₂). The partial pressure of 160mmHg oxygen is used to replicate ambient oxygen tension. While the physiologic oxygen tension of the venous circulation is 30-40mmHg, 0mmHg is used to demonstrate extreme hypoxic conditions to observe maximum sRBC sickling effect. The gas channel that overlays the bypass channel remained at 160mmHg oxygen, while the gas channel overlaying the observation channel was cycled between 160mmHg and 0mmHg oxygen at 3-5 min intervals until a steady state (SS) velocity was reached for 1 minute of SS data collection. SS velocity for each oxygen cycle is defined by the period over which the maximum difference within the velocity values is less than two standard deviations from the average. At the outlet of the observation and bypass channel gas ports, a fiber optic oxygen sensor (NeoFox-GT, Ocean Optics) was used to continuously monitor oxygen tensions throughout the experiment. PBS was perfused through the hydration layer by a syringe pump (NE-500, New Era Pump Systems) at 500µm/s, to prevent sRBC dehydration. A pressure regulator (PCD-15PSIG, Alicat Scientific) set to a constant PSI perfused the blood through the device to achieve an initial velocity of 700µm/s at normoxia, corresponding to a physiologically relevant venule shear rate of 373s⁻¹.

Quantitative Absorptive Cytometry

Quantitative Absorptive Cytometry (QAC) platform was used as an assay to detect polymer content and morphological changes induced by monensin-treatment. Three additional samples from SCD patients were obtained using methods listed above. The hematological data from these samples are listed in table 1 of this supplement. QAC builds off previous work published by Di Caprio et al⁴ to quantify morphology of RBCs in high throughput manner under variable oxygen tension. The optical absorption proprieties of oxygenated and deoxygenated hemoglobin are leveraged to quantify the ratio of the two species. Single cell images are recorded to calculate saturation from the ratio of oxy and deoxyhemoglobin, and the morphology of the cells is analyzed by a convolution neural net to determine if the cells contain detectable levels of polymer or if all hemoglobin is soluble.

QAC uses a previously developed microfluidic device in the Di Caprio study⁴. This device consists of a blood layer with a 30mm straight channel and a 25mm diffusion section. There is a 5mm imaging section. The diffusion section has a matrix of pillars to disperse the cells and is sufficiently long for the cells to reach steady state saturation. The imaging section has 21, 30µm channels to image individual cells. The gas layer on this device is a snaked channel that overlays the diffusion and imaging section.

Samples are prepared with a washing step; 50 ul of the blood sample is added to 200ul of PBS and spun at 2000 rpm for 2 minutes. A solution of 288 ul of 25 percent 7.4 pH albumin and 12 µl of 20 percent w/v acid blue 9 is added to 10 µL of the pellet to achieve a hematocrit of 3%. In table S1, the hematologic parameters prior to resuspension are shown. Albumin is used for
this experiment to match the refractive index of the red cells as this is necessary for accurate measuring of light attenuation.

The optical set up for QAC also builds off of Di Caprio's work. The main principal is red cells are illuminated with alternating blue LEDS in the Soret band and a constant red LED. In the Soret Band oxygenated hemoglobin has a peak absorption at 410nm and deoxygenated hemoglobin has a peak absorption at 430nm. By alternating these two LEDs and capturing images of the same cell at both wavelengths the mass of oxy and deoxyhemoglobin is recorded and the cell saturation is calculated using each species’ known extinction coefficient. The constant red LED is used to calculate cell volume. The camera captures images in Bayer RGB matrix with no color processing, thus the blue pixels of the matrix alternate between the two blue LEDs and the red pixels capture the constant red light.

Images are captured at a rate of 200fps with each blue LED triggering at 100 fps. Raw images are converted to uint8 matrices and are separated by red and blue color channels and resized using MATLAB. A MATLAB script tracks cells and records the intensity of each cell at 410nm and 430 nm then takes the ratio to calculate cell saturation. The cell images for the two blue LED frames and the red LED frame are combined and the morphology is analyzed by a ResNet 50 neural net to classify the cell’s hemoglobin as soluble or polymerized.

Data collection proceeds as follows: flow is stabilized for 10 min at 160 mmHg oxygen tension. After the settling time, 500 frame segments are captured, and the cell saturation is calculated. This is done several times to ensure the cells have reached steady state saturation. When steady state is reached 15000 frames are captured. This is repeated for 0, 15, 30, 45, 60, and 90 mmHg oxygen tensions with 10 minutes between the 160 mmHg and 0 mmHg step and 5 minutes between the rest.
References

S1: Device design and setup. Schematic of microfluidic device used in rheology experiments. (a) The blood channel (red) is split into two venule sized channels: bypass and observation. The middle and top layers contain the hydration channels (blue) and gas channels (green) that separate and overlay the bypass and observation channels in the blood layer distinctly. This enables independent control of oxygen tensions in each bypass and observation channel. The device was designed to overlay each layer with the layer below to enable vertical diffusion of oxygen through the device to the blood channel and prevent the transport of oxygen between the bypass and observation channels. Each layer is accessed using inlet and outlet ports. (b) A solenoid valve attached to compressed gas cylinders containing 95% N₂ and 95% air balanced with CO₂ were used to control the oxygen tension supplied to the bypass and observation channels. An oxygen sensor, at the outlet of the gas layer’s observation channel, was used to measure the oxygen tension inside the device. (c) PBS is perfused through both hydration channels by a double syringe pump. (d) A pressure regulator connected to the inlet of the blood channel was used to perfuse the blood at the desired oxygenated velocity. Data was collected using a highspeed camera to image a section of the observation channel.
S2: Experimental conductance. The conductance of untreated controls and monensin-treated samples under oxygenated (160mmHg) and deoxygenated (0mmHg) conditions. A Wilcoxon signed-rank test was used to determine if there is a significant difference between the control group and monensin treatment. Conductance was calculated using the blood flow rate and driving pressure. There was no significant difference between the control and monensin group during oxygenation, however there was a significant difference under deoxygenation (p < 0.05, n=13). This indicates differences in initial oxygenated velocities is negligible due to its dependence on the driving pressure and that differences in deoxygenated velocities are not due to differences in the initial velocities. The higher conductance points observed in normoxia in this figure correspond to MCV values of 91.8 fL and 98.3 fL and are within the lower quartile of MCV values within this study.
S3: AA controls. (a) Representative image of raw velocity data from a single AA patient sample. Oxygen tension (%) is displayed above in green and velocity (µm/sec) displayed in blue. Despite various oxygen tensions, there is no velocity response, demonstrating oxygen-independent velocity. This is in contrast to oxygen-dependent velocity response seen in sickle samples (Figure 1b). Similar responses were seen when repeated with 2 additional AA samples tested. (b) Monensin effect on MCV and MCHC in healthy AA blood. There were significant increases in MCV (p=0.001) and decreases in MCHC (p=0.009) with monensin treatment. Similar increases in MCV and decreases MCHC were seen in SCD patient samples (Figure 3a-
3b). (c) Summary of velocity response of 3 AA blood samples in the untreated and monensin-treated conditions. There was no significant change in velocity response between treatment and control conditions when exposed to hypoxia (p=0.874). A two-tailed paired t-test was used to determine significance between untreated and monensin-treated groups in all comparisons.
S4. RBC morphology analysis. A) Representative data from one SCD patient sample depicting the fraction of polymerized cells as a function of oxygen tension with monensin treatment (black) compared to untreated (gray) using QAC methodology. A lower fraction of polymerized cells is seen in this sample with monensin treatment compared to untreated, with greatest differences emerging around 30mmHg. (B) Similar curves to (A) were generated for two additional SCD samples and the AUC between monensin-treated and their untreated controls were measured and compared. AUC’s were normalized to the untreated control. Although monensin-treated samples had smaller AUC’s signifying a lower polymerized fraction, sample response varied and the difference was non-significant using a paired two-tailed t-test (1.00 vs 0.84, p=0.12).
Table S1. Hematological parameters of samples (HbSS) used in QAC

<table>
<thead>
<tr>
<th>Condition</th>
<th>WBC (x10^3/µL)</th>
<th>RBC (x10^6/µL)</th>
<th>HGB (g/dL)</th>
<th>HCT (%)</th>
<th>MCV (fL)</th>
<th>MCH (pg)</th>
<th>MCHC (g/dL)</th>
<th>PLT (x10^3/µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Whole Blood</td>
<td>14.8</td>
<td>9.2</td>
<td>26.7</td>
<td>85</td>
<td>34.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethanol control</td>
<td>1.2</td>
<td>0.77</td>
<td>2.1</td>
<td>6.6</td>
<td>85.7</td>
<td>27.3</td>
<td>31.8</td>
<td>5</td>
</tr>
<tr>
<td>10 nM Monensin</td>
<td>0.6</td>
<td>0.72</td>
<td>2.1</td>
<td>6.8</td>
<td>94.4</td>
<td>29.2</td>
<td>30.9</td>
<td>0</td>
</tr>
<tr>
<td>2 Ethanol control</td>
<td>3.8</td>
<td>0.87</td>
<td>2.8</td>
<td>7.7</td>
<td>88.5</td>
<td>32.2</td>
<td>36.4</td>
<td>0</td>
</tr>
<tr>
<td>10 nM Monensin</td>
<td>4.3</td>
<td>0.99</td>
<td>3.1</td>
<td>9.2</td>
<td>92.9</td>
<td>31.3</td>
<td>33.7</td>
<td>1</td>
</tr>
<tr>
<td>3 Whole Blood</td>
<td>8.92</td>
<td>22.8</td>
<td>110.7</td>
<td>33.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethanol Control</td>
<td>0.2</td>
<td>0.5</td>
<td>1.7</td>
<td>5.5</td>
<td>110</td>
<td>34</td>
<td>30.9</td>
<td>0</td>
</tr>
<tr>
<td>10 nM Monensin</td>
<td>0.9</td>
<td>1.62</td>
<td>5.8</td>
<td>20.9</td>
<td>129</td>
<td>35.8</td>
<td>27.8</td>
<td>8</td>
</tr>
</tbody>
</table>