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ABSTRACT

nteractions between platelets, leukocytes and the vessel wall provide

alternative pathological routes of thrombo-inflammatory leukocyte

recruitment. We found that when platelets were activated by a range of
agonists in whole blood, they shed platelet-derived extracellular vesicles
which rapidly and preferentially bound to blood monocytes compared to
other leukocytes. Platelet-derived extracellular vesicle binding to monocytes
was initiated by P-selectin-dependent adhesion and was stabilised by bind-
ing of phosphatidylserine. These interactions resulted in the progressive
transfer of the platelet adhesion receptor GPIba to monocytes. GPIbor-
monocytes tethered and rolled on immobilised von Willebrand Factor or
were recruited and activated on endothelial cells treated with TGE-f1 to
induce the expression of von Willebrand Factor. In both models monocyte
adhesion was ablated by a function-blocking antibody against GPIba.
Monocytes could also bind platelet-derived extracellular vesicle in mouse
blood in vitro and in vivo. Intratracheal instillations of diesel nanoparticles, to
model chronic pulmonary inflammation, induced accumulation of GPIba on
circulating monocytes. In intravital experiments, GPIba’-monocytes
adhered to the microcirculation of the TGF-B1-stimulated cremaster muscle,
while in the ApoE” model of atherosclerosis, GPIba-monocytes adhered to
the carotid arteries. In trauma patients, monocytes bore platelet markers
within 1 hour of injury, the levels of which correlated with severity of trau-
ma and resulted in monocyte clearance from the circulation. Thus, we have
defined a novel thrombo-inflammatory pathway in which platelet-derived
extracellular vesicles transfer a platelet adhesion receptor to monocytes,
allowing their recruitment in large and small blood vessels, and which is like-
Iy to be pathogenic.

Introduction

The recruitment of leukocytes during inflammation occurs in the haemodynami-
cally permissive environment of the post capillary venules. In this environment, vas-
cular endothelial cells responding to pro-inflammatory mediators such as cytokines
express adhesion receptors and activating stimuli such as chemokines, which ensure
efficient and localised trafficking of leukocytes into the affected tissues."* It has
become clear more recently that in pathological situations, platelets can also play a
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role in leukocyte recruitment in other vascular beds.’ Thus,
the integrated function of the thrombotic and inflammato-
ry systems results in recruitment of leukocytes to arteri-
oles in models of ischaemic injury of the liver and other
tissues.”'* Moreover, there is substantial evidence support-
ing a role for platelets in the preferential recruitment of
monocytes to the artery wall during atherogenesis. For
example, inhibition of platelet adhesion to the artery wall,
or induction of thrombocytopenia, significantly reduces
monocyte trafficking and the burden of atherosclerotic
disease in genetically susceptible strains of mice."™ In
addition, instillation of activated platelets exacerbates the
formation of atherosclerotic plaques in such models."*
There is also direct evidence that platelet P-selectin plays
a role in plaque formation in the ApoE” mouse."™* Other
studies demonstrate that platelet derived chemokines
such as CCL5 (RANTES) and CX3CL1 (fractalkine), once
deposited on vascular endothelial cells, can selectively
recruit monocytes in these models."™

The examples described above require platelet activa-
tion at the vessel wall to facilitate leukocyte recruitment
and trafficking. However, interactions between platelets
and leukocytes also occur in circulating blood under
pathological conditions. Indeed, formation of platelet-
leukocyte aggregates has been described in diseases as
diverse as bacterial infection, rheumatoid arthritis, dia-
betes and inflammatory bowel disease.”” In cardiovascu-
lar disease (CVD) the number of platelet-leukocyte aggre-
gates increases significantly, and one can measure an
increased incidence of such heterotypic aggregates in
individuals with independent risk factors for CVD, such
as hypertension.”* Indeed, it has been proposed that an
increase in the incidence of platelet-leukocyte aggregates
may in itself, be an independent risk factor for CVD.” The
formation of platelet leukocyte aggregates may also play
an important role in acute and severe inflammatory
responses. Thus, in patients with acute trauma or trauma
associated sepsis, an enhanced capacity for platelet acti-
vation and platelet interaction with monocytes and neu-
trophils has been reported in response to exogenous acti-
vation of their blood with the ionophore, ionomycin.”**

Extracellular vesicles which can be detected in the
blood, urine and other bodily fluids are heterogeneous
particles 40-1,500 nm in diameter that are derived from
the plasma membrane (microvesicles) or by exocytosis of
multi-vesicular bodies (exosomes).” They are released
from cells of the vasculature, including platelets, endothe-
lial cells (EC) and leukocytes, and specific populations can
be identified using appropriate methodology (e.g. flow
cytometry), as they express surface markers derived from
their cell of origin. There is now mounting evidence that
platelet-derived extracellular vesicles (PEV) (otherwise
and often referred to as microparticles or microvesicles)
are heterogeneous in nature. For example, in vitro, PEV
have been generated in response to shear stress, throm-
bin, calcium ionophore, adenosine diphosphate (ADP),
collagen and collagen related peptide.”™ Interestingly,
these studies show that PEV derive by using different
platelet agonists and differ in abundance, as well as the
cargo that they convey. Indeed, there is now good evi-
dence that platelets can shed large vesicles which contain
organelles such as mitochondria.* Until recent technolog-
ical advancements it had been impossible to analyse the
concentration and composition of vesicles using a single
platform. Flow cytometry does not detect vesicles <200-

300 nm and does not accurately measure larger vesicles
due to the disparity in the refractive index of biological
vesicles and the latex beads used as size standards on this
platform.” However, electron microscopy studies show
that the majority of PEV are small. Thus, although
Ponomereva et al. described calcium ionophore derived
PEV as large as 1,500 nm, particles were predominantly in
the range of 50-130 nm.*”* Similarly, Aatonen et al.
described the main population of PEV as being 100-250
nm, with in excess of 90% of all vesicles being smaller
than 500 nm irrespective of the platelet agonist used for
PEV biogenesis.* Mitochondria containing vesicles,
referred to above, were in the range of 500-1,500 nm.
Importantly, the study of the functions of distinct subsets
of PEV is not a well-developed field, however, bearing in
mind the diversity of the PEV generated upon platelet
activation, vesicles with discrete functional roles cannot
be ruled out. The diversity of platelet microparticles has
recently been reviewed.”

There is mounting evidence that PEV play a pathophys-
iological role in inflammation.*® An increased concentra-
tion of circulating PEV is associated with a number of dis-
eases. In diabetic retinopathy, the number of PEV was
associated with the severity of disease,” while the levels
of PEV circulating in patients with type-1 diabetes corre-
lated with the degree of pro-atherogenic dyslipidaemia.®
There was a correlation with vascular dysfunction
(assessed by measuring arterial elasticity and flow-depen-
dent vasodilatation of the brachial artery) in patients with
type-2 diabetes.” Interestingly, the number of PEV was
higher in patients with acute coronary syndromes than
those with stable angina,” implying an association with
the onset of athero-thrombotic disease. The roles of PEV
in inflammation and pathogenesis of inflammatory dis-
ease are not well understood. However, they possess
adhesion receptors such as glycoprotein (GP)Iba., allbp3-
integrin and P-selectin, meaning that they could interact
with the vessel wall and circulating leukocytes to promote
recruitment of the later. Importantly, as these receptors
ordinarily regulate the process of haemostasis, PEV might
provide an avenue of leukocyte recruitment to the disease
environment which falls outside of regulatory pathways
which ordinarily limit the duration and magnitude of the
inflammatory response.

Here, using assays of heterotypic aggregate formation
we have characterised the adhesive interactions between
leukocytes and PEV in whole blood and identified a novel
route by which the platelet adhesion receptor, GPIba, pro-
motes monocyte recruitment in both in vitro and in vivo
models of vascular inflammation.

Methods

Full Methods can be found in the Online Supplementary Materials
and Methods.

Blood donors

Blood was obtained from healthy donors with informed con-
sent and with local ethical approval (ERN_07-058). Blood from the
Golden Hour cohort (drawn within 1 hour of suffering traumatic
injury) was obtained under the National Research Ethics
Committee (reference 13/WA/0399). Specimen collection and
informed consent procedures were approved and permission
granted by the Biomedical Science Ethic Committee.
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Animal experiments

All experiments were performed in accordance with the Home
Office Guidelines. In each experiment C57BL/6 IL4R/GPlba-Tg
or ApoE” or wild-type (WT) animals with the same background
were allocated at random to experimental groups. Mice from the
same litter were randomly distributed amongst experimental
groups.

Results

Platelet activation in whole blood leads to formation of
PEV and their adhesion to monocytes

We investigated the effect of platelet activation on
platelet-leukocyte interactions in whole blood. When
thrombin receptor activating peptide (TRAP), an agonist
of the platelet protease activated receptor-1 (PAR-1), was
added to sheared whole blood, a time dependent increase
in the percentage of monocytes bearing the platelet recep-
tor GPIba (CD42b) as well as CD41 (GPIIb) and in the
intensity of GPlba and CD41 staining, was observed
(Figure 1A-C; Online Supplementary Figure S1A-C and S2).
In unstimulated blood, few monocytes (~5%) possessed
measurable levels of GPIba, showing that shear did not
activate platelets. During analysis monocytes were subdi-
vided into two subsets using standard markers as previ-
ously described.” Classical monocytes (CD14°CD16") rep-
resent 90% of cells in the circulation and non-
classical/intermediate monocytes (CD147"CD16") 10%
(Online Supplementary Figure S1A). In our studies, we have
compared classical to non-classical/intermediate mono-
cytes grouped together. This is because the low numbers
of isolated intermediate and non-classical monocytes do
not allow appropriate functional testing of these subsets
individually in our assays. The interaction between
platelets and monocytes was similar when classical and
non-classical/intermediate monocytes were assayed,
showing similar patterns of GPIba and CD41 accumula-
tion over time (Figure 1B-C; Online Supplementary Figure
S1A-C and S2). Interestingly, only a modest accumulation
of GPIba was evident on neutrophils stimulated with
TRAP and even less when whole blood was stimulated
with CRP-XL (Figure 1D and Ounline Supplementary Figure
S1D-E). We observed no accumulation of GPIba on lym-
phocytes (Figure 1D and Online Supplementary Figure S1D).

The median fluorescent intensity (MFI) of GPIbo on
monocytes after 30 minutes (min) of TRAP stimulation
was well below the intensity on individual platelets
(Figure 2A). Moreover, the time course of the acquisition
of GPIba by monocytes demonstrated a progressive accu-
mulation that ruled out the binding of whole platelets
(Figure 2B). This pattern of accumulation is consistent
with the adhesion of PEV, which was confirmed using
confocal microscopy (Figure 2C and Online Supplementary
Figure S3). For comparison, we show a monocyte bearing
whole platelets generated under different experimental
conditions i.e. in the absence of shear (Figure 2D).

Here, we have reported the formation of PEV in
response to thromboxane A2, ADP and cross linked colla-
gen related peptide (CRP-XL). Activation of platelets in
whole blood using CRP-XL, ADP, the thromboxane
mimetic U46619, or the C-type lectin-like receptor
(CLEC-2) agonist, thodocytin, resulted in the same pattern
of accumulation of GPIba on monocytes, showing that
different routes of platelet activation resulted in PEV pro-

duction and adhesion to monocytes (Online Supplementary
Figure S4A-D).

PEV binding to monocytes is rapid

Accumulation of PEV on monocytes after stimulation
of whole blood was progressive over a prolonged period
of time (i.e. 30 min) (Figure 1B-C and Online Supplementary
Figure S4). An important question is whether this pattern
of accumulation is dependent upon the dynamics of PEV-
monocyte interaction and adhesion, or whether the gen-
esis of PEV from activated platelets is the rate-limiting
step. Here we used the addition of isolated and pre-
labelled PEV (1x10°/mL) generated by stimulating
platelets (3x108) with CRP-XL (1 pg/mL), to unstimulated
whole blood to investigate this. After CRP-XL activation
of isolated platelets, GPIba stained PEV were readily dis-
cernible by flow cytometry in platelet supernatants
(Figure 3A and Online Supplementary Figure SSA-E). A sim-
ilar pattern was observed for CD41 on PEV (Ounline
Supplementary Figure S5C and S6). Interestingly, ~25% of
the large vesicles detected by flow cytometry contained
mitochondrial fragments, as previously described™
(Online Supplementary Figure S7A). Analysis using
nanoparticle tracking showed that 3x10° platelets could
yield 1.2+0.3x10° PEV compared to an average
1.3x10°+2.8x10” vesicles in untreated conditions (Figure
3B and Online Supplementary Figure S5D-E) with a mean
diameter of 274+188 nm. To date it has not been possible
to simultaneously count vesicles, size them and analyse
protein cargo using a single platform. The Exo View-R100
is a new platform which allows such analysis providing
previously unattainable information in a single protocol.
Using this assay we observed that PEV from CRP-XL
stimulated platelets captured by a CD9 antibody had a
mean size of 54 nm while those captured by a CD41a
antibody had a mean size of 82.3 nm (Online
Supplementary Figure S7B). Upon analysis using the Exo
View system, we observed the majority of PEV were cap-
tured by CD4la and CD9 (which are abundant on
platelets), but not CD63 or CD81 (which are expressed
on exosomes) (Online Supplementary Figure S7C). This was
also confirmed by secondary labelling of captured PEV
using fluorescent antibodies against CD9, CD63 and
CD81 (Online Supplementary Figure S7D). Labelled PEV
were added to whole blood at a concentration of
1x10°/mL and their interactions with leukocytes assayed
by flow cytometry. Many monocytes acquired GPlba
within 5 min, but neutrophils or lymphocytes did not
(Figure 3C-D). The proportion of monocytes acquiring
GPlba slowly increased thereafter, while intensity of
GPIba  staining increased steadily (Figure 3C-D).
Interestingly, we found that most of the GPIba signal
detected by flow cytometry was intracellular (~80%) on
both monocyte subsets (Online Supplementary Figure SSA-
B) and in agreement with the confocal imaging data
described in Figure 2C. We also analysed the adhesion of
PEV labelled with the lipophilic dye PKH67 to exclude
antibody-mediated interaction of PEV with monocytes.
PKH67 labelled all of the PEV in the activated-platelet
supernatant (Figure 3E). The dynamics of PEV binding to
monocytes, neutrophils or lymphocytes (Figure 3F) was
similar to that for the antibody-labelled PEV (Figure 3C).

The mechanistic basis for the preferential accumulation
of GPIba on monocytes was investigated using adhesion-
blocking reagents. Inclusion of a function-neutralising



anti-P-selectin antibody inhibited GPIba accumulation on
both monocytes and neutrophils, strongly implicating
this platelet receptor in heterotypic adhesion with the
two cells (Figure 4A and Ounline Supplementary Figure S9A-
B). We measured the density of the P-selectin counter
receptor P-selectin Glycoprotein Ligand 1 (PSGL-1) on
blood leukocytes because the efficiency of GPlba accu-
mulation might reflect the surface density of this mole-
cule. Figure 4B shows that there is substantially more
PSGL-1 on monocytes than neutrophils, which could
account for the differential levels of GPIbo accumulating
on these cells. However, T cells, which did not accumu-
late GPIba, also possessed abundant PSGL-1. Thus addi-
tional and cell specific adhesive interactions may be

required to stabilise P-selectin mediated adhesion under
shear. Using a panel of function-neutralising antibodies
against known platelet and leukocyte adhesion mole-
cules, we could find no contribution to heterotypic aggre-
gate formation from CD31, ICAM-2 or P2-integrins
(Figure 4C-E). However, an anti-phosphatidylserine (PS)
antibody significantly reduced GPIba accumulation on
both neutrophils and monocytes (Figure 4C-E). The func-
tion of PS as a stabilising interactant is concordant with
its documented patterns of interaction with monocytes
and neutrophils, while its potential lack of interaction
with T cells would account for the lack of GPIba accumu-
lation on these cells.

An important question was whether monocyte activa-
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Dunnett post-test.
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tion contributed to GPIba accumulation. For these stud-
ies, we used CRP-XL to stimulate whole blood, as this
agonist does not directly activate monocytes and would
thus allow analysis of whether secondary activation of
monocytes downstream of platelet activation was prereq-
uisite for PEV adhesion. We assessed the expression of
the activation marker aMp2-integrin (CD11b/CD18) on
monocytes 30 min after the addition of CRP-XL to whole
blood. There was some increase in both integrin subunits
CD11b and CD18 (Online Supplementary Figure S9C-D),
however, this was inconsistent and monocyte subset spe-
cific. When a function neutralising antibody against
CD18 was included in the assay it had no effect on GPIba
accumulation (Figure 4C-E), indicating that monocyte
activation was not required for PEV adhesion.

Adopted GPIbao. is a functional adhesion molecule
supporting monocyte rolling on von Willebrand Factor
As GPIba is known to mediate binding of platelets
from flowing blood to von Willebrand Factor (VWE), we
tested whether VWEF could also recruit PEV-treated mono-
cytes (Figure 5A-E). Monocytes lacking GPIbo showed
low levels of adhesion when perfused across immobilised
human VWF (Figure 5B, E). However, acquisition of PEV-
derived-GPIba supported capture and rolling (66.8+4.1%
of adherent cells rolling) of monocytes on VWF (Figure
5C, E). Importantly, the adhesion of PEV-treated mono-
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cytes was inhibited by a function-neutralising antibody
against GPIba (Figure 5D, E).

Monocytes bearing GPIba. bind to EC in a model of
vascular inflammation

Transforming growth factor beta-1 (TGF-p1) promotes
the expression of a matrix of VWF on the surface of EC
which recruits platelets from flowing blood, which in
turn function as adhesive bridges for the preferential
recruitment of monocytes to EC in vitro and in vivo.” Here
we used this model to determine whether PEV-derived
GPIba could support monocyte adhesion directly to
stimulated endothelium. A low level of monocyte adhe-
sion to TGF-Bl-stimulated EC was observed without
PEV (Figure 6A, D). However, PEV-treated monocytes
adhered in significantly higher numbers, an adhesive
interaction blocked by a GPIba blocking antibody
(Figure 6B-D). As previously observed, recruited mono-
cytes did not roll on the EC. Thus 6.1+0.9% of adherent
cells were observed rolling, with the remaining 93.9%
becoming activated and stably adherent. Interestingly,
the acquisition of PEV increased the efficiency with
which monocytes transmigrated across the EC monolay-
er (Figure 6E). We could attribute this increase in PEV-
treated monocytes recruitment to PEV rather than solu-
ble factors such as chemokines, as supernatants generat-
ed from PEV filtered using a 10 KDa size filter (to remove
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Figure 2. GPlbo. on monocytes in stimulated whole blood derives from platelet-
derived extracellular vesicles. (A, B) Representative plots of GPlba labelling on
monocytes (all) in unstimulated or TRAP (100 uM)-stimulated whole blood under
shear for 30 minutes (min) (A) and over time (B) measured by flow cytometry. (C)
Representative pictures of monocytes labelled with anti-CD14, anti-GPlba. for
platelet-derived extracellular vesicles (PEV) and DAPI imaged by confocal microscopy.
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labelled with FITC-phalloidin and DAPI imaged by confocal microscopy.
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vesicles) did not induce monocyte adhesion and transmi-
gration (Figure 6D, E).

PEV-treated murine monocytes bearing GPIba can be
generated and recruited in mice

Prior to moving to i vivo assays of monocyte recruit-
ment, we determined whether murine PEV derived-GPIba.
could accumulate on murine monocytes. Using the ex vivo
whole blood assay under shear, we observed a high pro-
portion of murine monocytes rapidly accumulated GPIba
and CD41 after addition of ADP to the blood (Figure 7A
and Online Supplementary Figure S10A-C). To examine

monocytes/PEV aggregate formation i vivo we induced
pulmonary inflammation by instillation of air pollution
particles into the lungs. A significant increase in the num-
ber of monocytes bearing GPIba and CD41 (allb-integrin)
was observed in animals exposed to air pollution particles,
but not vehicle control (PBS) (Figure 7B-C). Importantly,
and in concordance with human studies, GPIba and CD41
intensities of expression was below the level on individual
platelets (Online Supplementary Figure S10D), demonstrat-
ing that monocytes bind PEV in this model.

Using an intravital preparation of the TGF-p1-stimulat-
ed, mouse cremaster muscle to observe monocyte interac-
tions with the microvasculature in real time, we tracked
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XL for 30 min, n=4. (C, D) Percentage (C) and median fluorescent intensity (MFI) (D) of GPIba.* leukocytes in unstimulated whole blood supplemented with CRP_XL
(1 ug/mL)-generated-PEV at 37 °C under shear determined by flow cytometry, n=4. (E) Representative plot of PEV generated by stimulation of platelets with 1 ug/mL
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human mouse PEV-treated monocytes (Online
Supplementary  Figure ~ S10E-F).  We  used the
hIL4R/GPIba—Tg mouse which expressed human IL-4
receptor under the GPIba promoter. This allows the ani-
mals to be rendered thrombocytopenic by injection of an
antibody against hIL4R. Adoptively transferred WT
platelets or PEV are however retained within the circula-
tion. Using mice depleted of endogenous platelets using
an anti-hIL4R antibody, we observed higher numbers of
adoptively transferred WT PEV-treated monocytes rolling
on the microvasculature compared to untreated mono-
cytes; the number was significantly reduced by a GPIba
blocking antibody (Figure 7D-G). Detailed analysis
revealed two populations of rolling cells: those exhibiting
stable rolling (interactions >300 ms) with a velocity of
241482 wm/s (Figure 7D, F); those exhibiting transient
rolling (interactions <300 ms) with a velocity of 478+65
um/s (Figure 7D, G). We also infused human monocytes
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into ApoE” mice that had been on a western diet for six
weeks and observed the carotid artery by intravital
microscopy. Murine PEV-treated monocytes adhered to
the artery wall with significantly greater efficiency than
untreated monocytes (Figure 7H). In this environment a
mixture of adhesive behaviors was observed with station-
ary adhesion, stable rolling and transient rolling adhesion
evident (Figure 7H).

Monocytes with platelet markers appear within 1 hour
of severe trauma and are rapidly cleared from the
circulation

We investigated whether rapid production and binding
of extracellular vesicles to monocytes could be detected
following an acute event such as traumatic injury. In the
Golden Hour study blood samples in the pre-hospital set-
ting (mean time to blood sampling =43 min) were
acquired from traumatically-injured patients (injury sever-
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Figure 4. Blocking of GPIba* platelet-derived extracellular vesicles to leukocytes. (A) Binding of platelet-derived extracellular vesicles (PEV) on classical monocytes,
non-classical/intermediate monocytes and neutrophils with blockade of P-selectin in TRAP (100 uM)-stimulated whole blood for 30 minutes (min) under shear, n=3.
(B) Surface expression (MFI: median fluorescence intensity) of PSGL1 (P-selectin ligand) on monocyte subsets, neutrophils and lymphocytes determined by flow
cytometry, n=3. (C-E) Binding of PEV on classical monocytes (C), non-classical/intermediate monocytes (D) and neutrophils (E) with blockade of CD31, ICAM-2, CD18
(p2) and Phosphatidylserine (PS) in TRAP (100 uM)-stimulated whole blood for 30 min under shear, n=3-5. Data are mean * standard error of the mean (SEM).
*P<0.05, **P<0.01 compared the normalised IgG control (A) by analysis of variance (ANOVA) and Dunnett post-test or Bonferroni post-test (B) and one sample t-test

to 100% of TRAP control (C-E).




ity score [ISS] >8). Analysis by flow cytometry showed
acquisition of CD41 by circulating leukocytes with prefer-
ential binding to monocytes (Figure 8A-B and Ounline
Supplementary Figure S11A-B). The CD41 measured on
monocytes was likely derived from PEV, as the intensity
of fluorescent staining at 4 hours post trauma (2,226+474)
was substantially below that of a single platelet
(18,702+964) (Online Supplementary Figure S11B). Both the
number of CD41" monocytes and the intensity of staining
for CD41 on them (MF]), correlated significantly with the
severity of trauma (Figure 8C-D). Lastly, there was a
marked loss of CD41" monocytes from the blood within 4
to 12 hours, which was sustained for up to 72 hours
(Figure 8E) and a decrease in circulating platelet counts
which reflects platelet activation and PEV generation
(Online Supplementary Figure S11C).

A Isotype control Monocytes

Discussion

We have defined a new thrombo-inflammatory route
of monocyte recruitment via an adhesion molecule trans-
ferred from platelets. Recruitment is reliant upon platelet-
derived GPIba, which allows monocyte capture by VWE
exposed on the vessel wall. Previous studies have indicat-
ed that platelet-derived chemokines can then induce arrest
and migration.® Ounline Supplementary Figure S12 sum-
marises the steps we propose in this thrombo-inflamma-
tory cascade. Importantly, the cascade may diverge from
the normal pathways of leukocyte trafficking in a manner
that could contribute to disease, as plasma borne PEV
preferentially deliver functional GPlba to the monocyte
surface. Transfer of GPIba can support adhesion of mono-
cytes in vitro and in vivo, in human and murine models of
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Figure 5. GPlba derived from platelet-derived
extracellular vesicles supports monocytes rolling
on von Wlllebrand Factor. (A) Representative plots
of CRP_XL (1 ug/mL) generated-GPIba* platelet-
derived extracellular vesicles (PEV) bound to
monocytes measured by flow cytometry. (B-D)
Representative pictures of monocytes (B), mono-
cytes bearing CRP_XL (1 ug/mL) generated-PEV
(C) and monocytes bearing PEV with GPIba block-
ade (clone 6B4, 20 ug/mL) (D) recruited on von
Willebrand Factor (VWF) under flow conditions. (E)
Total adhesion of monocytes with or without PEV
and GPIba blockade on VWF in flow conditions,
n>10. Data are mean + standard error of the
- mean (SEM). **P< 0.01 by ANOVA and Bonferroni
post-test.
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vascular inflammation. This process means that circulat-
ing monocytes may be recruited to the vessel wall through
a pathway outside of the tightly regulated physiological
inflammatory system. We believe that such monocyte
recruitment may be particularly relevant in the dysregulat-
ed inflammatory responses seen in chronic inflammatory
disease, which leads to tissue damage and loss of function
(such as atherosclerosis and rheumatoid arthritis). In addi-
tion, it may be important in inflammation associated with
severe trauma, where the drivers of inflammation are sub-
stantial and acute tissue damage, and extensive activation
of the coagulation and haemostatic pathway. However,
we believe that during acute responses initiated by inflam-
matory cytokines in a coordinated and controlled manner,
and where timely and comprehensive resolution is the
norm, platelet-mediated pathways of leukocyte trafficking
are likely to be of lesser importance.

Other studies show that whole platelets can bind leuko-
cytes, a process dependent upon platelet and/or leukocyte
activation and linked to pathological conditions.*
Moreover, if PEV are mixed with isolated monocytes they
are able to activate the leukocytes so that they show
enhanced levels of recruitment to EC in vitro, although

Monocytes

[}
?

N
?

N
?

o

=)
[0}
§3
2%
23
©
By
[T =]
O\—
S <
S
Ee
T £
C B
3
ke)

PEV - - + +
Anti-GPIbo. - - .

PEV Supernatant - + - -

Monocytes+ PEV

direct binding between PEV and leukocytes was not
demonstrated in that study.” Here, we show that mono-
cytes preferentially accumulate PEV rather than whole
platelets through an adhesive pathway reliant upon
P-selectin. In the context of leukocyte recruitment to vas-
cular EC, P-selectin supports a distinct form of rolling
adhesion which is based on the transient nature of the
bonds formed with PSGL-1 under conditions of shear.”
Here we propose that the P-selectin-PSGL-1 mediated
interactions between PEV and leukocytes are also tran-
sient under the shear conditions of our assay and in flow-
ing blood in vivo. However, on monocytes and neutrophils,
PS in the PEV membrane acts to stabilise heterotypic
adhesion upon interaction with membrane receptors on
the leukocytes. In the case of T lymphocytes, which also
possess abundant PSGL-1, the transient interactions
formed with P-selectin under shear are not stabilised by
PS, which has not been reported to bind T cells to our
knowledge.

In fact, much of the data on heterotypic aggregate for-
mation in human blood does not discriminate between
platelets and PEV binding to leukocytes, and it is unclear
which is being assessed. Studies that do report platelet
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Figure 6. GPlba derived from platelet-derived extracellular vesicles supports monocytes recruitment on TGF-f1 stimulated endothelial cells. (A-C) Representative
pictures of monocytes (A), monocytes bearing CRP_XL (1 ug/mlL) generated-PEV (B) and monocytes bearing PEV with GPIba. blockade (clone 6B4, 20 ug/mL) (C),
adhered on TGF-$1 (10 ng/mL) stimulated EC in flow conditions. (D, E) Total adhesion (D) and transmigration (E) of monocytes with or without PEV, GPlba blockade
and filtered PEV through a 10 KDa filters to remove PEV and leave potential soluble factors on TGF-$1 stimulated EC in flow conditions, n=3-5. Data are mean *
standard error of the mean (SEM). *P<0.05, **P< 0.01 by ANOVA and Bonferroni post-test.
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binding are routinely performed ex vivo under the non-
physiological condition of stasis in vitro, where the number
of platelet-leukocyte aggregates formed is a direct func-
tion of the time of incubation.” Thus, patient blood may
have a greater propensity to form aggregates with
platelets under static conditions ex vivo, but this probably
does not reflect the situation i1 vivo. Such aggregation may
be a surrogate endpoint for the degree of platelet and/or
leukocyte activation present in patient blood. In support
of this, the patterns of PEV associated with circulating
monocytes that we report here are in strong accord with a
recent report from Fendl et al. who analysed the effects of
pre-analytical blood handling (which included the imposi-
tion of shear) on the association of extracellular vesicles
with leukocytes.”

Interestingly, upon addition of purified PEV to whole
blood, we observed rapid accumulation of GPIba on
monocytes, implying assimilation of PEV was extremely
efficient. However, when a platelet activating agonist was
added to whole blood the process was continuous and
prolonged, leading to an incremental increase in GPlba
expression. The latter profile of accumulation of GPIba
likely reflects the dynamics of PEV formation and release
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by platelets in whole blood, implying that the rate-limit-
ing step in this thrombo-inflammatory pathway is not
PEV-monocyte interaction, but rather the process of PEV
release after platelet activation. In addition, accumulation
of PEV was more prevalent in monocytes compared to
neutrophils and lymphocytes. In a previous study, we
observed different patterns of recruitment, migration and
reverse migration in vitro between classical and non-classi-
cal/intermediate monocytes.® We characterised a novel
process of crosstalk mediated by cytokines between the
two subsets that allowed a balanced regulation of
endothelial cell activation. Other studies have shown that
changes in proportional representation of monocyte sub-
sets in the circulation are associated with vascular dis-
eases.” However, in this study we observed no preferen-
tial binding of PEV between classical and non-
classical/intermediate monocytes, which was consistent
with similar levels of PSGL1 expression exhibited by all
subsets.

GPIba is an adhesion receptor mediating a specialised
form of platelet recruitment during haemostasis. Bonds
forming between GPIba and VWEF exhibit high on rates,
meaning that adhesion can occur between rapidly flowing
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Figure 8. Monocytes accumulate platelet-derived extracellular vesicles (PEV)
derived marker CD41 in trauma patients. (A, B) Percentage (A) and median flu-
orescent intensity (MFI) (B) of CD41* monocytes, neutrophils and lymphocytes
(PBL) in whole blood in patients at time point (T) <60 minutes (min) after trau-
ma, n=31-35. ND: non detectable for lymphocytes. (C, D) Percentage (C) and
MFI (D) of CD41* monocytes in whole blood in patients at T<60 min after trauma
plotted against Injury Severity Score (ISS), n=28. (E) Percentage of CD41* mono-
cytes in whole blood in trauma patients at T<60 minutes, 4-12 hours and 48-72
hours, n=33. Data are mean + standard error of the mean (SEM) (A, B and E).
*P<0.05, ***P< 0.001 by ANOVA and Bonferroni post-test (A, E), Mann Whitney
t-test (B) and linear regression (C, D).




platelets and the substrate.'* However, these bonds also
exhibit high off rates. Thus, under conditions of shear
stress (i.e. blood flow) the rapid formation and dissolution
of bonds supports rolling adhesion."*® We observed that
monocytes bearing GPIba also rolled on purified VWE
However, on EC bearing VWE monocytes were rapidly
activated, which is consistent with our previous observa-
tions on the activity of EC derived stimuli such as C-C
chemokine ligand 2 (CCL2)."?

Trogocytosis is the phenomenon by which lymphocytes
extract surface molecules from antigen presenting cells
through transfer of plasma membrane at the immunologi-
cal synapse.” This process has been observed for T, B and
NK cells and neutrophils®® and is a fast and efficient
means of transferring molecules involved in the regulation
of immune functions.” We cannot completely exclude that
monocytes in whole blood do not bind whole platelets and
acquire GPIba and CD41 via a trogocytosis like process,
although a synapse like structure has not been reported in
this context to our knowledge. However, both trogocytosis
and PEV accumulation by monocytes require activation
dependent cytoskeletal rearrangement to achieve the trans-
fer of membrane cargo that alters the function of the recip-
ient cells. Thus, the processes may not be unrelated in their
mechanisms of initiation and progression. However, trogo-
cytosis does appear to be specific to the immunological
synapse or related structures.”” Here however, we have
shown that purified labelled PEV bind to isolated mono-
cytes or monocytes in whole blood with the same dynam-
ics as agonist stimulated systems. This clearly demon-
strates that a trogocytosis like process is not required for
accumulation of PEV once they have been generated by
platelet activation (Figure 3). Our colleagues have also
shown that PEV levels increase dramatically after trauma
and thus are likely to be the source of GPIba found on
leukocytes in trauma patients.”

Using intravital microscopy we observed GPIba-depen-
dent recruitment of PEV-treated monocytes to the vascu-
lature. Interestingly, the short-lived adhesive interactions,
here termed ‘transient rolling’ which did not result in pro-
longed monocyte localisation and activation at the vessel
wall, have previously been shown to have physiological
roles. Thus, under steady-state conditions (non-inflamed),
circulating platelets expressing GPIba are able to interact
transiently with sinusoidal Kupffer cells in the liver via sur-
face-expressed VWE interactions which are important for
host defence, as they facilitate uptake and disposal of bac-
teria by liver resident macrophages (Kupffer cells).” In the
context of CVD, we showed that induction of pulmonary
inflammation with pollution nanoparticles, a known risk
factor for thrombo-inflammatory disease associated with
atherosclerosis,” induced the formation of circulating
monocyte-PEV aggregates. Moreover, such aggregates
showed a significantly enhanced capacity to bind to the
artery wall in the ApoE” mouse after induction of disease
by feeding a high fat western diet. Thus, we propose that
the transfer of platelet cargo to monocytes by PEV can
contribute to the progression of plaque formation by pro-
moting the recruitment of inflammatory monocytes. It
would be interesting to investigate the functional and phe-

Platelet vesicles and monocyte interaction -

notypical changes induced by binding and internalisation
of PEV by monocytes. In this study we did not observe
major changes in integrin expression as a marker of activa-
tion. However, we do not exclude changes in monocyte
activation and/or function relevant to vascular disease
over longer periods of interaction.

The paradigm discussed above may provide a novel
thrombo-inflammatory mechanism for the continuous
low levels of monocyte delivery in chronic inflammatory
conditions such as atherosclerosis. However, our Golden
Hour data suggest that acquisition of this pathway of
monocyte recruitment could also lead to the clearance of
monocytes from the blood during acute and severe trau-
ma. Indeed, in this injured patient cohort, PEV counts
increase in the circulation” and monocytes rapidly
acquired CD41-derived from PEV (1 hour after trauma)
which we believe led to their clearance from the circula-
tion, as frequency of CD41* monocyte numbers are lower
4 hours after trauma. This may be due to clearance by the
reticulo-EC system, or alternatively by the expedited
recruitment to damaged and inflamed tissues, or indeed a
combination of both. Whatever the pathway of their
removal from the circulation, we speculate that the rapid
clearance of immune cells from the circulation may exac-
erbate cell turnover and result in immune suppression and
the increased risk of septic complications. In addition,
monocytes bearing pro-coagulant PEV could also con-
tribute to the initiation and propagation of disseminated
intravascular coagulation (DIC) which is a potential and
serious complication of traumatic injury.”

In conclusion, we believe that this new paradigm for
leukocyte recruitment is an important step in understand-
ing the contribution of platelets to thrombo-inflammatory
pathology. By acquiring GPIba in the circulation, mono-
cytes may be provided with a means of interacting with
the vessel wall, which is ordinarily restricted to platelets
during haemostasis. In chronic diseases such as athero-
sclerosis, this process may occur with a low frequency
over protracted periods of time. Nevertheless, the dynam-
ic nature of PEV-monocyte interaction demonstrated in
this study implies that such routes of thrombo-inflamma-
tion may be major contributors to pathology.
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