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Targeting sickle cell disease root-cause
pathophysiology with small molecules

Yogen Saunthararajah

Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic,
Cleveland, OH, USA

ABSTRACT

The complex, frequently devastating, multi-organ pathophysiology of
s

ickle cell disease has a single root cause: polymerization of deoxy-
genated sickle hemoglobin. A logical approach to disease modifica-
tion is, therefore, to interdict this root cause. Ideally, such interdiction
would utilize small molecules that are practical and accessible for world-
wide application. Two types of such small molecule strategies are actively
being evaluated in the clinic. The first strategy intends to shift red blood cell
precursor hemoglobin manufacturing away from sickle hemoglobin and
towards fetal hemoglobin, which inhibits sickle hemoglobin polymeriza-
tion by a number of mechanisms. The second strategy intends to chemical-
ly modify sickle hemoglobin directly in order to inhibit its polymerization.
Important lessons have been learnt from the pre-clinical and clinical evalu-
ations to date. Open questions remain, but this review summarizes the
valuable experience and knowledge already gained, which can guide ongo-
ing and future efforts for molecular mechanism-based, practical and acces-
sible disease modification of sickle cell disease.

Introduction

Sickle cell disease (SCD) demands practical, accessible oral therapies, since it is a
problem of global scope. It afflicts millions of people worldwide, and has an espe-
cially high prevalence in pediatric populations in low-income, malaria-belt coun-
tries.! Such therapies are technically plausible, since despite the complex and poten-
tially devastating multi-organ pathophysiology of SCD, this condition has a single,
well-characterized root cause: polymerization of deoxygenated sickle hemoglobin
(HbS). The hemoglobin molecule is an assembly of two a-like protein subunits and
two fB-like protein subunits (a,,f,), each with a heme moiety to transport an oxygen
molecule. In SCD, the gene for the  sub-unit (HBB) of adult hemoglobin (HbA)
contains an ‘A’ to ‘T’ mutation in the seventh codon. The § sub-units (§°) produced
by this mutated gene substitute a hydrophilic glutamate with a hydrophobic
valine, predisposing deoxygenated HbS (a,p%) to polymerization and gelation in
red blood cells (RBC). This affects RBC viability, rtheology and adhesiveness, pro-
moting hemolysis, endothelial damage, occlusion of small blood vessels, and
thromboses of large vessels. The hemolytic anemia is frequently severe, and is only
partially and non-sustainably compensated by >10-fold increases in
erythropoiesis.”> The net consequence of this anemia and vaso-occlusion is
decreased oxygen delivery and hypoxic injury to potentially all tissues of the body;,
manifest clinically as episodic pain, chronic pain, avascular necrosis of bones, infec-
tions, overt and silent strokes, renal/respiratory/cardiac/hepatic failure, and early
death. In the USA >$1 billion in annual health care costs is attributed to SCD, and
even so, the median life expectancy of affected individuals is shortened by two or
more decades on average.** Most children with SCD in low-income countries do
not even survive to adulthood.' By way of emphasis, all this morbidity and mortal-
ity begins with a single process, polymerization of deoxygenated HbS in RBC, and
it is therefore logical to attempt to interdict this root cause. Two major small mol-
ecule drug approaches are in active clinical evaluation: (i) small molecules to shift
the hemoglobin manufactured by RBC precursors from HbS to fetal hemoglobin
(HbF), and (ii) small molecules to chemically modify HbS to impede its polymer-
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ization. These active efforts are discussed in turn, with an
emphasis on lessons learned so far and remaining open
questions.

Small molecule approaches for which there are no active
clinical efforts that we are aware of are not discussed here,
e.g., small molecules to decrease HbS concentration by
increasing RBC hydration.” Methods to interdict HbS
polymerization that are not based on small molecule
drugs are also not discussed here, because their applica-
tion in the areas of the world most affected by SCD will
be difficult for reasons of infrastructure and costs, e.g., har-
vesting of autologous hematopoietic stem cells, their engi-
neering ex vivo, then re-infusion after myeloablative bone
marrow conditioning by chemotherapy and/or radiation
(gene therapy), or use of hematopoietic stem cells from
immune-compatible non-SCD donors for transplant — a
valuable approach in the West that has been thoroughly
and recently reviewed elsewhere.”

Interdicting HbS polymerization by pharmacolog-
ical induction of HbF

At the fetal stage of life, RBC contain fetal hemoglobin
(HbF), an assembly of two a-globin subunits and two v-
globin subunits (oy,), with the y-globin subunits being
encoded by duplicated y-globin genes (HBG2 and HBG1).
During human development, the switch from HbF to HbA
production begins late in fetal gestation (~ 7 months), and
the typical adult pattern of <1% HbF and >90% HbA in

RBC is established by ~12 months post-conception.®”
Several genetic polymorphisms or mutations in humans,
some but not all identified, promote persistent, relatively
high RBC HbF content beyond infancy. The phenotypes
with particularly generous HbF levels (HbF >10%) are
referred to as hereditary persistence of fetal hemoglobin
(HPFH). SCD patients who co-inherit such genetic vari-
ants can, in the best cases, have asymptomatic, normal
life-spans.”* Notably, HbF has benefits even at lower
dynamic ranges than seen in HPFH: HbF levels correlate
continuously with fewer vaso-occlusive pain crises, less
renal damage, less pulmonary hypertension, fewer strokes
and longer survival.**" In short, nature has demonstrated
that HbF is a highly potent modulator of SCD.”

Detailed biochemical studies have demonstrated how:
the intracellular concentration of HbS is a major determi-
nant of polymerization kinetics, and HbF substitution for
HbS decreases this concentration.”>* Moreover, HbF does
not polymerize with deoxygenated HbS for reasons of
molecular structure (the sophisticated biophysics underly-
ing this have recently been reviewed in detail).” By con-
trast, HbA can polymerize with deoxygenated HbS.”* In
short, HbF interdicts the root-cause pathophysiology of
SCD. It is logical therefore to attempt to use pharmacolo-
gy to recapitulate such naturally demonstrated, powerful
disease modulation.”

The earliest efforts at HbF induction
The earliest efforts built on the observation that HbF is
enriched in RBC produced during the recovery phase of
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Figure 1. Polymerization of sickle hemoglobin drives the multi-organ cascade of sickle cell disease pathophysiology. This review examines the strategies to interdict

the multi-organ cascade of sickle cell disease at its inception using small molecules that shift red blood cell precursor production from sickle hemoglobin (HbS)

toward fetal hemoglobin (HbF), and small molecules that chemically modify HbS to decrease its polymerization. We published variations of this figure in Molokie et

al.®* and Lavelle et al.”®
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bone marrow from severe insults or stress.”*” One way of
creating such stress is to administer cytotoxic (cell killing)
drugs, leading to clinical evaluation in SCD of the oral
ribonucleotide reductase inhibitor hydroxyurea.”® In the
pivotal trial, hydroxyurea (15-35 mg/kg) increased HbF for
2 years in ~50% of the adult SCD patients treated.**" As
predicted, HbF increases with hydroxyurea correlated
strongly with longer RBC half-life,”* fewer pain crises,”
and better quality of life* (the benefits of hydroxyurea ther-
apy in sickle cell mice also depended on HbF induction).®
Trial patients with HbF levels >0.5 g/dL also survived
longer" although a caveat to these analyses was that it was
not known whether the higher HbF levels were intrinsic to
the patients or a result of the hydroxyurea therapy.

There were, however, noteworthy limitations to the
induction of HbF by hydroxyurea: (i) average HbF increas-
es at 2 years were modest (3.6%);*** (ii) HbF increases
were particularly unlikely in patients with the lowest
baseline HbF levels and thus at highest risk of morbidity
and mortality,***® and (iii) HbF increases diminished
over time, even in the ~50% of patients with excellent ini-
tial HbF induction.**

A shared basis for these several limitations was suggest-
ed by the correlation between lower HbF increases and
fewer reticulocytes (<300,000x10°/L) and neutrophils
(<7.5%x10°/L) at baseline: this correlation underscored that
HbF induction by cytotoxicity requires sufficient reserves
of hematopoietic precursors to mount repeated recoveries
from the stress that destroys their counterparts.”* Such
reserves are circumscribed, subject to attrition via vaso-
occlusion in the marrow and kidneys, and decline with
aging.*"*¥%* A declining capacity to compensate for
hemolytic anemia is a problem even separate from consid-
erations of sustainable HbF induction via cytotoxicity:
SCD patients require erythropoiesis at >10-fold the nor-
mal rate simply to sustain hemoglobin levels compatible
with life, and dwindling compensatory reticulocytosis is a
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major cause of early death.>'*** Therefore, alternative,
non-cytotoxic, durable, and more potent methods of
inducing HbF are needed.

Directly targeting the enzymes that silence
the y-globin gene

DNA in nuclei is packaged together with RNA and
structural proteins — histones - to form chromatin.
Chromatin regulates gene transcription by determining
accessibility of genes to the massive machinery (~150 pro-
teins) that transcribes genes. Reorganization (‘remodel-
ing’) of chromatin, to facilitate or hinder this machinery, is
signaled via post-translational modifications to histones -
methylation and acetylation of lysine residues, phospho-
rylation of threonines and serines — and by modifications
to DNA, mainly, methylation of cytosines that precede
guanines (CpG). These signals determine whether ATP-
dependent chromatin remodelers shift histones towards
or away from gene transcription start sites, repositioning
these physical barriers to either welcome or obstruct the
gene transcribing basal transcription factor machinery.

Thus, induction of HbE, even when it is indirectly via
bone marrow stress, implies remodeling y-globin and p-glo-
bin gene loci, to activate one and not the other.”
Specifically, persistent HbF expression requires: (i)
decreased operation at HBG2/HBG1 of epigenetic enzymes
that create ‘off’ marks and that reposition histones to
obstruct transcription start sites, and (ii) increased function
of the epigenetic enzymes that create epigenetic ‘on’ marks
and that reposition histones away from transcription start
sites, with vice versa at HBB. Cytotoxic methods of inducing
HbF achieve such chromatin remodeling crudely and indi-
rectly, via bone marrow stress”** (Figure 2).

So why not identify repressing epigenetic enzymes and
inhibit them directly** (Figure 2)¢ Cells contain dozens of
epigenetic enzymes mediating gene activation and repres-
sion, and not all repressing epigenetic enzymes (corepres-
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Figure 2. Induction of fetal hemoglobin (HbF) requires chromatin remodeling, including DNA hypomethylation, of the HbF gene locus. Bone marrow stress, e.g.,
from cytotoxic drugs such as hydroxyurea, can create chromatin remodeling during the recovery phase of surviving erythroid precursors. An alternative approach is
to remodel the hemoglobin F (HbF) gene locus (HBG) directly, e.g., by directly inhibiting/repressing epigenetic enzymes. Enzymes shown are those known to be
recruited by BCL11A, TR2 or TR4 (EHMT2 and PRMT5 are not reported participants in the BCL11A/TR2/TR4 hub). The relative efficiencies of these approaches are
illustrated by the greater HbF increases produced in the same non-human primates or patients by decitabine ~0.2 mg/kg twice weekly versus hydroxyurea ~20
mg/kg daily. That is, the molar amount of decitabine administered per week is <1/1000" the amount of hydroxyurea administered per week. We published variations

of this figure in Molokie et al.*® and Lavelle et al.*®




sor protein complexes) are logical molecular targets for
therapy. Sequence-specific DNA-binding factors are par-
ticular in their epigenetic co-regulator usage, e.g., even dis-
tinguishing between closely similar BAF and PBAF coacti-
vator complexes.”* Logically, the epigenetic enzymes to
target for HbF induction are those that have been directly
implicated in silencing of HBG2/HBG1. Multi-protein
corepressor complexes directed to the HBG loci by the
DNA-binding factors DRED and BCL11A have been char-
acterized in great detail.”* Druggable epigenetic silencing
enzymes contained in these recruited corepressor com-
plexes include DNA methyltransferase 1 (DNMT1), vari-
ous histone deacetylases (HDAC), lysine demethylase 1
(LSD1, KDM1A), and chromodomain helicase DNA bind-
ing protein 4 (CHD4) and other members of the ISWI fam-
ily of ATP-dependent chromatin remodelers™ (Table 1).
Other types of biochemical studies have implicated
euchromatic histone lysine methyltransferase 2 (EHMT2,
G9a),” and protein arginine methyltransferase 5 (PRMT)5)
in the silencing of HBG2/HBG1 7 (Table 1). Yet another
approach to identifying candidate targets has been chem-
ical screens for HbF inducers. This approach has identified
histone methyltransferases EHMT1 and EHMT?2 as candi-
dates for inhibition™® (Table 1). Notably not identified by
studies thus far, given that there are clinically available
inhibitors for these targets, are epigenetic enzymes in
polycomb repressor complex 2 (e.g., EZH2).”

Since the natural genetic experiment of HPFH provides a
fundamental rationale for pursuing pharmacological induc-
tion of HbE, by extension, can the genetic variants underly-
ing HPFH help to identify or prioritize molecular targets for
manipulation¢ HPFH-linked point mutations cluster in two
regions 115 and 200 base-pairs upstream of the HBG2 start
site, suggesting these are sites at which key repressors of
HBG2/HBG1 bind.® BCL11A and ZBTB7A have been
shown to bind at these locations, and HPFH mutations have
been shown to abrogate such binding.” Moreover, some

HPFH mutations occur at BCL11A rather than p-globin gene
loci™* In short, the natural genetic experiment of HPFH
also seems to support drugging of the corepressors recruited
by BCL11A (and ZBTB7A and DRED).**

The candidate targets are discussed below in turn.
Histone deacetylases (HDAC)

HDAC were among the first candidate targets identified
for HbF induction.® Moreover, a number of HDAC
inhibitors have already been approved by the United
States Food and Drug Administration (FDA) to treat
peripheral T-cell malignancies (Table 1). Unfortunately,
despite exciting pre-clinical results, clinical application of
marketed HDAC inhibitors for HbF induction is limited
by the pleiotropic roles of HDAC outside of chromatin.
That s, clinical side-effects, arising from HDAC participa-
tion in multiple cellular and physiological functions, limit
the achievement of an epigenetic pharmacodynamic effect
in the target compartment, and thus of HbF induction in
vivo.*”* There are efforts to develop HDAC inhibitors that
are more selective to specific HDAC than the broad
HDAC inhibiting activity of the currently marketed drugs
(Table 1), and perhaps these more selective agents will
have a more suitable safety profile for HbF induction. The
caution remains that even an on-target, specific drug
action can generate toxicities if the molecular target of that
action has pleiotropic physiological roles.

DNA methyltransferase 1 (DNMT1)

DNMTT1 is well known to maintain methylation marks
on DNA through cell division. In addition, DNMTT1 is a
corepressor that is recruited by sequence-specific DNA-
binding factors, e.g, DRED (TR2/TR4) and BCL11A,
which direct epigenetic silencing of HBG.®***® The
deoxycytidine analog decitabine and its pro-drug 5-azacy-
tidine, FDA-approved to treat the myeloid malignancy
myelodysplastic syndrome, can deplete DNMT1: a nitro-
gen substituted for a carbon in the decitabine pyrimidine

Table 1. Scientifically validated molecular targets for HbF induction and candidate drugs

Target Recruited by BCL11A Drugs Stage
HDAC* Yes - Depsipeptide (HDACI1,2,4,6) - Marketed for peripheral T-cell lymphomas
- Belinostat (broad HDAC inhibitor) - Phase ['in SCD (panobinostat)
- Panobinostat (broad) (ClinicalTrials.gov identifier: NCT01245179)
- Vorinostat (broad) - Phase Iin SCD and B-thalassemia
(HQK-1001) (ClinicalTrials.gov identifiers: NCT01642756,
NCT01601340)
DNMT1 Yes - Decitabine - Marketed for myelodysplastic syndromes
- 5-azacytidine (decitabine pro-drug) - Oral forms, including in combination with inhibitors of
degradation, are in phase I/1l for liquid/solid malignancies,
and SCD (ClinicalTrials.gov identifier: NCT01685515)
KDM1A! Yes - ORY-1001 (related to RN-1) - Phase I/l in liquid/solid malignancies
- GSK2879552 - Phase ['in SCD (INCB059872)
-45C-202 (ClinicalTrials.gov identifier: NCT03132324)
- INCB059872 (terminated, results not publicly available)
PRMT5 Not reported - GSK3326595 - Phase [ in liquid/solid malignancies
EHMT2 Not reported - UNC0638 - Pre-clinical in vitro
ISWI Yes - not officially designated, patent issued - Pre-clinical in vitro

(CHDA4, SMARCA5)

*Only histone deacetylase (HDAC) inhibitors approved in the USA are listed, several other HDAC inhibitors are in clinical trials.#0Only KDM1A inhibitors registered in clinical
trials in the USA are listed, several other compounds are in development. SCD: sickle cell disease.
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ring covalently binds to DNMTT1 and causes its degrada-
tion.® By depleting DNMT1 protein, decitabine disrupts
its scaffolding functions for other epigenetic enzymes
such as KDM1A.*® That is, decitabine does not just inhib-
it the enzyme function of DNMT1 but produces a broad
corepressor disrupting effect. Because the deoxyribose
moiety of decitabine is unmodified, it can incorporate into
the elongating DNA strand during the S-phase without
terminating chain extension or causing cytotoxicity, con-
trasting with most nucleoside analogs used in the clinic to
treat cancer.”” High concentrations of decitabine do,
however, produce off-target anti-metabolite effects and
cytotoxicity, in significant part via its uridine moiety
degradation products that can misincorporate into DNA
or inhibit thymidylate synthase.®” We designed
decitabine dose, schedule and route-of-administration reg-
imens to produce non-cytotoxic depletion of DNMTT1 in
vivo."”*** These regimens increased HbF by >10% in SCD
patients who had no HbF response (~0.3%) to hydrox-
yurea in the pivotal clinical trial.*** That is, very small,
non-cytotoxic doses of ~0.2 mg/kg twice weekly were
sufficient to produce large increases in HbF and total
hemoglobins, even in patients in whom hydroxyurea ~20
mg/kg/day, >1000-fold the molar amount of decitabine,
did not induce HbF (Figure 2)."*

Marketed decitabine, however, is a parenteral drug with
trivial oral bioavailability, undermining potential for
worldwide application. We have therefore combined oral
decitabine with tetrahydrouridine to inhibit the enzyme
that limits its oral bioavailability, cytidine deaminase.”
This combination was well-tolerated and safe in a phase I
study in patients with severe SCD. The target decitabine
dose of 0.16 mg/kg produced a wide decitabine concentra-
tion-time profile (low C,.,, long T,..) ideal for non-cyto-
toxic DNMTT1 depletion®*** and decreased DNMT1 pro-
tein in peripheral blood mononuclear cells by >75% and
repetitive element CpG methylation by ~10%. This
increased HbF by 4-9%, doubling HbF-enriched RBC (F-
cells) up to ~80% of total RBC. Total hemoglobin
increased by 1.2-1.9 g/dL (P=0.01) as reticulocytes simul-
taneously decreased; that is, better quality and efficiency
of HbF-enriched erythropoiesis elevated hemoglobin
using fewer reticulocytes. Other indications of better RBC
quality, biomarkers of hemolysis, thrombophilia and
inflammation (lactate dehydrogenase, bilirubin, D-dimer,
C-reactive protein) also improved. The side-effects were a
concurrent increase in platelets and decrease in neu-
trophils, expected with non-cytotoxic DNMT1 depletion.
In the relatively short treatment duration of 8 weeks,
these blood count shifts did not cross thresholds requiring
withholding or modification of treatment, that is, neu-
trophil counts and platelets remained in ranges observed
in SCD patients receiving standard-of-care therapies.

The major limitation is the need for longer term studies
to demonstrate durable safety and efficacy of the oral
tetrahydrouridine/decitabine combination.

Lysine demethylase 1 (LSD1, KDM1A)

KDM1A, like DNMTT, is recruited by the HBG2/HBG1
repressing DNA-binding factors DRED and BCL11A, and
KDM1A inhibition with either of two specific inhibitors
induced HbF in vitro, in sickle mice and in non-human pri-
mates.”"” Several KDM1A inhibitors are in clinical trials

for cancer indications (Table 1). At least two of the com-
pounds in trials (ORY-1001, GSK2879552) are built around
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a tranylcypropamine warhead that inhibits monoamine
oxidases that metabolize catecholamine neurotransmit-
ters in the brain. Although cancer clinical trials are ongoing
and unpublished (EudraCT number: 2013-002447-29;
ClinicalTrials.gov identifiers: NCT02177812, NCT02034123),
there is concern regarding side-effects related to the poten-
tial for inhibition of monoamine oxidases other than
KDM1A. Thus, there are ongoing efforts to develop and
evaluate KDM1A inhibitors with other scaffolds (e.g.,
ClinicalTrials.gov identifier: NCT01344707). One registered
phase I clinical trial evaluated a KDM1A inhibitor for HbE
induction in  SCD  (ClinicalTrials.gov  identifier:
NCT03132324). This trial has been terminated but results
are not publicly available at this time.

Protein arginine methyltransferase 5 (PRMT5)

PRMTS methylation of histone H4 arginine 3 has been
implicated as a signal that recruits additional chromatin-
modifying enzymes and represses HBG.” There is a
PRMTS inhibitor in clinical trials (GSK3326595) for cancer
indications. No trials of this molecule for HbF induction in
SCD have been registered so far.

Euchromatic histone lysine methyltransferase 2 (EHMTZ2, G9a)

EHMT?2 has been shown to be recruited to the B-globin
locus by the sequence-specific DNA binding factor NFE2,
and the EHMT?2 inhibitor UNC0638 has been shown to
induce HbF in vitro.”® As of this time, there are no regis-
tered clinical trials evaluating EHMT? inhibition to induce
HbE

Chromodomain helicase DNA binding protein 4 (CHD4) and
SWI/SNF-related matrix-associated actin-dependent regulator of
chromatin subfamily A member 5 (SMARCA5) (ISWI family of ATP-
dependent chromatin remodelers

The culmination of chromatin remodeling for gene
repression or activation is nucleosome (histone octamer)
repositioning around the transcription start site. This is
energetically expensive work executed by SWI/SNF or
ISWI family proteins containing the HELICc-DExx ATP-
ase domain, with SWI/SNF moving histones away to
facilitate basal transcription factor machinery access and
ISWI executing the opposite.”'™"" Since such nucleo-
some repositioning is the crux of chromatin remodeling,
inhibition of this action should in principle offer corre-
sponding potency. CHD4 and SMARCAS5 are HELICc-
DExx-containing corepressors that are recruited by
BCL11A and DRED to repress HBG2/HBG1.* We have
identified a first-in-class drug-like compound series that
preliminarily appears to inhibit the HELICc-DExx
domains of SMARCAS and CHD4, and we are actively
investigating the potential of this series to induce HbE
(US20170253589A1).

Epigenetic targeting - Lessons so far and open
questions

Pre-clinical and clinical experience to date provide vari-
ous lessons and raise some questions regarding epigenetic
targeting to induce HbF, as described below.

The consequences of inhibiting an epigenetic enzyme depend
on cellular context

The baseline expression pattern of transcription factors
is a key determinant of a cell’s fate or function response to
epigenetic enzyme inhibition, because sequence-specific

- haematologica | 2019; 104(9)



DNA-binding factors direct the function of these epigenet-
ic enzymes and are mandatory for gene activation.'”
Stated another way, the consequences of inhibiting a par-
ticular epigenetic enzyme depend very much on cellular
context.”” A corollary of the above is that although
inhibiting silencing epigenetic enzymes can produce cell
fate or function shifts, these relate to what the cells were
to begin with and are not drastic.'” This is of course criti-
cal clinically, since a candidate epigenetic therapeutic for
SCD will be distributed systemically.

What then about the cellular/transcription factor con-
text of erythropoiesis enables inhibition of DNMTT1 etc.,
to activate HBG2/HBG1¢ Several groups have found that
the developmental switch from HBG2/HBG1 to HBB acti-
vation is recapitulated, albeit very rapidly, during ery-
throid lineage maturation (a ‘maturational switch’ during
routine erythropoiesis).”"" The maturational switch
entails removal of activating and acquisition of repressive
epigenetic marks at HBG2/HBG1.%" with physical migra-
tion of the shared enhancer, the locus control region, from
the HBG2/HBG1 to the HBB locus.” These dynamics at
HBG2/HBG1 and HBB during erythropoiesis creates an
opportunity for pharmacological/biochemical interven-
tion to prevent enhancer migration, to stall the massive
gene activating machinery at HBG2/HBG1. That is, HbF
induction by inhibiting epigenetic ‘off’ enzymes such as
DNMTT is not predicated on returning the enhancer from
HBB back to HBG2/HBG1 (turning a gene that is ‘off’ to
‘on’), but on preventing a switch from HBG2/HBG1 to
HBB in the first place (preventing a gene that is ‘on’ from
being turned ‘off’). Accordingly, HbF induction by an
inhibitor of the silencing epigenetic enzyme EHMT?2
(UNCO0638) depended on the timing of its addition to cul-
tures of synchronously maturing erythroid progenitors,”
with similar observations in our hands with DNMT1-
depleting drugs (personal communication).

Why are these drugs being evaluated for, or used, to treat cancer?

Some of the most recurrently mutated, deleted or ampli-
fied genes in cancers encode for chromatin remodelers.
Thus, another concern with epigenetic targeting is
whether it might mimic some of these genetic changes and
favor activation of oncogenic programs. It is reassuring to
some extent, however, that the epigenetic targets and
drugs discussed above have been or are being developed to
treat and/or prevent cancer. We recently reviewed the bio-
logical rationale for this," and it is briefly summarized
here: cancer cells, including self-replicating cancer cells
(cancer or leukemia ‘stem’ cells), contain high amounts of
the lineage master transcription factors that normally acti-
vate terminal lineage-fates, and depend on specific core-
pressors (‘addictions’) in order to avoid these terminal
fates." The pathway of action is activation of the terminal
lineage-fates intended by cancer cell lineage master tran-
scription factor content. The same chromatin-‘relaxing’
treatments that trigger terminal lineage-fates of
cancer/leukemia stem cells preserve self-renewal of
uncommitted tissue stem cells, since these cells express
stem cell master transcription factors, not high levels of lin-
eage-specifying transcription factors.” This therapeutic
index explains why non-cytotoxic doses and schedules of
decitabine can suppress malignant clones and simultane-
ously improve functional blood counts even in elderly
patients with myeloid malignancies.” """ Stated simply,
several corepressor components (repressing epigenetic

enzymes), e.g., DNMT1, HDAC, KDM1A, have been bio-
logically validated as molecular targets for the treatment
and prevention of cancer.""

Teratogenic risks

Another concern is the potential for teratogenicity: this
should be assumed for individual agents, unless shown
otherwise by formal toxicological studies.

Drug metabolism is central to the clinical profile of activity

Drugs, being biologically active, are metabolized, and
this too can contribute substantially to their in vivo profile
of activity. For example, DNMT1-depleting decitabine is a
pyrmidine nucleoside analog pro-drug that depends
absolutely for its activity on the pyrimidine metabolism
enzyme deoxycytidine kinase: Deoxycytidine kinase exe-
cutes the initial phosphorylation of decitabine in cells,
which rate-limits its conversion into the nucleotide form
that actually depletes DNMT1. Serendipitously, deoxycy-
tidine kinase is most highly expressed in the myeloid
compartment, especially erythroid precursors. Thus, the
clinical profile of decitabine activity is in major part dictat-
ed by its metabolically driven tropism for the myeloid
compartment.

Baseline HbF levels dictate final HbF levels

There is a wide variation in baseline HbF levels in
patients with SCD and even in the general population,
reflecting the influence of various genetic polymorphisms
on the regulation of this locus.” Even if a molecular target-
ed therapy produces similar rates of increase in HbF% (the
percentage of total hemoglobin that is HbF) in all patients,
the final HbF% will be dictated by the level at which
HbF% began. Moreover, in clinical trials we have conduct-
ed with DNMT1-depleting decitabine, we have noticed a
slightly lower slope to the rate of increase in HbF% in
SCD patients with lower HbE% at baseline. Fortunately
and importantly, however, HbF induced by this epigenetic
strategy was well-distributed among RBC, and the rates of
increase of HbF-enriched RBC (F-cells) was actually higher
in patients with low F-cells at baseline.** %

At some time-point after starting therapy, F-cells enter-
ing the circulation are matched by a similar number of F-
cells leaving the circulation, producing plateaus in HbF%
and F-cell%.

Small molecules to chemically modify HbS to
impede polymerization

The scientific foundation for efforts to chemically mod-
ify HbS is the two-state allosteric Monod-Wyman-
Changeux structural model which characterizes the rapid-
ly reversible equilibrium between the quarternary struc-
ture of hemoglobin with low oxygen affinity (fully deoxy-
genated hemoglobin, “T’ quarternary structure) and the
hemoglobin quarternary structure with high affinity for
oxygen (oxygenated hemoglobin, ‘R’ quarternary struc-
ture)."*"” The Monod-Wyman-Changeux model demon-
strated incompatibility of the R conformation with poly-
merization, creating a foundation to propose molecules to
favor the high oxygen affinity R conformation, as a
method to delay HbS polymerization.®

The basic concern with such an approach is that SCD is
a disease of decreased oxygen delivery to tissues and,
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thus, if a chemical modification produces a high oxygen
affinity hemoglobin molecule, there is a necessary play off
between decreased oxygen supply from increased oxygen
affinity of hemoglobin versus increased oxygen supply
from less HbS polymerization/higher total hemoglobin.
This balancing act is discussed in more detail in the sec-
tion ‘Lessons learned so far’ below. Ultimately, however,
rigorous clinical evaluation is key,”""* and clinical evalua-
tion has started or is underway for a number of candidate
drugs that exploit these principles:

Small molecules to convert hemoglobin to methemoglobin

The earliest clinical effort in this field evaluated the con-
version of hemoglobin to methemoglobin following the
administration of sodium nitrite or para-amino-proprio-
phenone (PAPP) to five patients."” Both agents were able
to increase methemoglobin. Methemoglobin levels of
>20% (but not less) produced by sodium nitrite extended
RBC survival as measured by chromium-labeling. The
methemoglobinemia itself was apparently well-tolerated,
but there was no evidence of any clinical benefit. Instead,
there were significant side-effects from the administered
drugs."”

Interestingly, higher methemoglobin levels produced by
PAPP did not extend RBC survival, possibly because PAPP
was directly hemolytic.

Small molecules to convert hemoglobin to carboxyhemoglobin

Carbon monoxide can be used to convert hemoglobin to
carboxyhemoglobin. Infusion of free pegylated carboxyhe-
moglobin (MP4CO), as a hemoglobin-based carbon
monoxide carrier, was evaluated in a phase I study.” In an
abstract description of results in 18 patients, the maximum
increase in carboxyhemoglobin was to 2%, which returned
to pre-dosing levels within 8 h of completion of the
MP4CO infusion. There was no significant increase in total
hemoglobin. No further studies have been reported.

Small molecules that delay HbS polymetization by unclear
mechanisms

Niprisan (Nix-0699) and related small molecules (SCD-
101) are plant-derived molecules that have been found to
delay polymerization of deoxygenated HbS, but by
unclear mechanisms.”” SCD-101 has been evaluated in a
phase IB clinical trial in 26 SCD patients. There were no
major adverse events attributed to the drug taken for 28
days, and it appeared to decrease chronic pain and fatigue
at higher doses. However, there were no laboratory data
providing evidence of decreased hemolysis or increased
total hemoglobin, although analysis of peripheral smears
suggested improvements in RBC shape."”

Small molecules to increase hemoglobin oxygen affinity

Specific small molecule aldehydes have been found to
form reversible Schiff base linkages with the N-terminal
amino group of hemoglobin a chains to lock in the high
oxygen affinity R conformation, and the polyaromatic
adldehyde GBT440 (voxeletor) has been developed
through to phase III clinical trial evaluation. In phase I/II
randomized, double-blind, placebo-controlled evaluation
in SCD patients, some of whom were receiving concur-
rent therapy with hydroxyurea, there were increases in
total hemoglobin of =1 g/dL in six of 12 patients who
received the drug for 90 days or more.””® There were con-
current decreases in markers of hemolysis (lactate dehy-

drogenase, total bilirubin). There were no significant
adverse events attributed to study drug. Oxygen delivery
was evaluated by measurement of oxygen consumption
during cardiopulmonary exercise testing, erythropoietin
levels, resting heart rate and heart rate during peak exer-
cise, and these parameters did not suggest decreased
oxygen delivery to tissues.'” A subsequent double-blind,
randomized, placebo-controlled phase III clinical trial
evaluated two different doses of the study drug (900 and
1500 mg per day) in 274 SCD patients, two-thirds of
whom remained on stable doses of hydroxyurea initiat-
ed well before study enrollment.” A hemoglobin
response, defined as an increase from baseline of >1 g/dL
at week 24, occurred in 51% of the patients on the 1500
mg dose, 33% on the 900 mg dose, and 7% on placebo,
in intention-to-treat analyses. There were also improve-
ments in biomarkers of hemolysis. The frequency of
vaso-occlusive crises did not differ between the treat-
ment arms. Breakdown of vaso-occlusive crisis frequen-
cy according to whether or not the patients were taking
hydroxyurea was not reported. Erythropoietin levels (as
a surrogate for oxygen delivery) as well as grade 3 and
serious adverse events were similar between the treat-
ment arms."

Chemical modification of HbS - lessons learned
so far and open questions

Balancing acts

The clinical trial results with GBT440 thus illustrate that
chemical modification of hemoglobin to increase its oxy-
gen affinity (promote the hemoglobin R conformation)
can indeed significantly decrease hemolysis and signifi-
cantly increase total hemoglobin. The hope and goal is
that higher hemoglobin increases oxygen supply by
amounts that exceed any decrease in oxygen supply from
the higher oxygen affinity of the modified hemoglobin
molecule,*'" as per the equation:

Oxygen Supply = Blood Flow (mL blood/100 g
tissue/min) x Arterial Oxygen Saturation (%)
x Total Hemoglobin (g/dL).””

Thus, increasing total hemoglobin increases oxygen
supply, but chemical modification of some of these hemo-
globin molecules to increase oxygen affinity decreases
effective arterial oxygen saturation and oxygen supply.
Some tissues, e.g., the brain, have limited capacity to
increase the ‘blood flow’ component in the equation, and
hence, are particularly dependent on the ‘arterial oxygen
saturation’ x ‘total hemoglobin’ components, as extensive-
ly modeled recently."** Underscoring this point, most
silent cerebral infarctions in SCD children have been
found to be caused by disruption to oxygen supply that is
not caused by large vessel vasculopathy, implying anemia
and/or blood oxygen saturation are critical drivers of this
hypoxic damage.”**

Even the ‘blood flow’ component of the equation is a
balancing act in SCD patients: whole blood viscosity is a
key determinant of blood flow; less HbS polymerization,
by increasing (improving) RBC deformability, can
decrease whole blood viscosity and thus increase blood
flow. On the other hand, higher total hemoglobin/hemat-
ocrit can increase blood viscosity which can decrease
blood flow, even with hematocrits in an anemia range,
because of the contribution of baseline low RBC deforma-
bility of SCD to viscosity. This blood flow calculus needs



to be considered with small molecules aiming to chemical-
ly modify HbS, and with small molecules aiming to sub-
stitute HbS with HbE

Ultimately, the risk/benefit calculus for any therapeutic
approach requires careful clinical trial determination.

Combinatorial approaches

In oncology, combinations of drugs are almost manda-
tory, because the target cell population is evolving, and
will select to evade the effects of drugs. Although target
cells in SCD are not evolving, other biological realities
compel consideration of combination therapies. One real-
ity is that most SCD patients will already have
tissue/organ damage that can undermine the potential
benefits of novel small molecule therapeutics. For exam-
ple, diminished bone marrow reserve from vaso-occlusive
damage and/or replication-mediated exhaustion, which
decreases compensatory reticulocytosis, and which con-
tributes to early death,> could limit the scope of
potential benefit that can be produced by HbF inducers or
HbS modifiers. Another biological reality, but potentially
positive, is demonstrated by the approval by the FDA of
the amino acid glutamine as a treatment to reduce the fre-
quency of vaso-occlusive crises in SCD patients."”” Natural
substances, which in most humans can be assumed to be
satisfactorily maintained by a normal diet, might actually
be important pharmaceuticals for SCD patients. By way
of bringing such negative and potentially positive biologi-
cal realities together, it is noteworthy that the natural sub-
stance nicotinamide (vitamin B3) markedly expands
hematopoietic stem cells in vitro at concentrations that can
be readily and safely produced in vivo with oral supple-
mentation.”' Moreover, nicotinamide is a direct precur-
sor for the vital energy currency nicotinamide adenine
dinucleotide (NAD) which is depleted in SCD RBC,
increasing their susceptibility to oxidative damage. In fact,
replenishing NAD is one of the rationales for glutamine
administration to SCD patients."” In short, in considering
combination therapy, there could be important, highly
feasible, but unexplored opportunities around relatively
non-toxic natural substances (glutamine, nicotinamide,
vitamin D, etc.). Other under-evaluated natural molecules
include the kidney hormone erythropoietin, since declin-
ing kidney erythropoietin production also contributes to
declining compensatory reticulocytosis.’

Combining small molecules to inhibit more than one
co-repressing enzyme in the BCL11A hub, each used at
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doses low enough to avoid side-effects from off-target
actions, and with non-overlapping side-effects from on-
target actions, might produce greater HbF induction than
achieved with a single target. Such molecules should have
non-cytotoxic mechanisms of action, to avoid potential
injury to needed bone marrow capacity. Unfortunately,
there are few non-cytotoxic small molecule drugs target-
ing rational epigenetic targets, and even fewer for which
optimal single molecule application has been character-
ized (Table 1). That is, more non-cytotoxic epigenetic
drugs, and more information on their profiles of side-
effects from on-target and off-target actions, are needed to
guide any consideration of combination therapy:.

What about combining HbF inducers with HbS modi-
fiers¢ This has in effect been evaluated in the clinical trials
of GBT440, since this drug was added to stable doses of
hydroxyurea in >60% of clinical trial participants.
Hemoglobin increases of >1 g/dL occurred in ~40% of
patients taking GBT440 1500 mg alone versus ~55% of
patients taking GBT440 1500 mg + hydroxyurea in the
phase III trial, but whether vaso-occlusive crisis frequency
and other adverse events varied between these two
groups was not described.” The efficacy calculus and
hope is that increases in oxygen delivery from better RBC
deformability and higher total hemoglobin will exceed
decreases in oxygen delivery caused by greater blood vis-
cosity and chemical modification of HbS.

Conclusions

Clinical proof-of-principle that substantial total hemo-
globin increases can be produced by non-cytotoxic inhibi-
tion of specific epigenetic enzymes, to shift RBC precursor
hemoglobin manufacturing from HbS to HbE and by
chemical modification of hemoglobin to promote the high
oxygen affinity ‘R’ quarternary structure of the hemoglo-
bin molecule, has already been generated in SCD patients.
Clinical evaluation to determine the long-term safety, the
impact on symptoms and multi-organ pathophysiology,
and the durability of any benefits, is ongoing. There is
hope that one or more of the small molecules being eval-
uated will pass rigorous scrutiny and culminate in practi-
cal, accessible, cost-effective, safe and potent disease-
modifying therapy for SCD patients worldwide.

Funding source: National Heart, Lung and Blood Institute
UO1 HL117658.
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